Qwen3_8B_sort/sql_vllm.py

157 lines
5.7 KiB
Python
Raw Permalink Normal View History

2025-05-22 11:38:05 +08:00
from openai import OpenAI
import os
import json
import random
import pandas as pd
import re
import sys
import sqlite3
import time
from sql_prompt import create_prompt_json
from sql_prompt import read_json_file
# 自动下载模型时指定使用modelscope; 否则会从HuggingFace下载
os.environ['VLLM_USE_MODELSCOPE']='True'
if __name__ == "__main__":
sys.stdout.reconfigure(encoding='utf-8')
# 连接到数据库
sort_json_path = "sort.json" # 分类信息文件
category_data = read_json_file(sort_json_path)
# 文件路径
table_name = 'data'
conn = sqlite3.connect(f'{table_name}.db') # 替换为您的数据库文件名
cursor = conn.cursor()
sort_name = '产品类型'
sort_value = ('住宿', '门票', '抢购')
num_limit = "500"
# SQL查询 - 随机选择500个指定产品类型的记录
query = f"""
SELECT * FROM data
WHERE {sort_name} IN {sort_value}
ORDER BY RANDOM()
LIMIT {num_limit}
"""
cursor.execute(query)
result = cursor.fetchall()
# 修改 OpenAI 的 API 密钥和 API 基础 URL 以使用 vLLM 的 API 服务器。
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
#work_dir = './prompt'
results = []
for i, row in enumerate(result):
# 记录开始时间
loop_start_time = time.time()
prompt = create_prompt_json(row ,category_data) # 您的prompt文件路径
prompt_str = json.dumps(prompt, ensure_ascii=False) # 将字典转换为JSON字符串保留中文字符
# 使用聊天接口
messages = [
{"role": "user", "content": prompt_str}
]
completion = client.chat.completions.create(
model="Qwen3-8B",
messages=messages
)
# 获取生成的文本
for choice in completion.choices:
generated_text = choice.message.content
# 确保文本使用UTF-8编码
if isinstance(generated_text, bytes):
generated_text = generated_text.decode('utf-8')
elif isinstance(generated_text, str):
# 如果是字符串但编码可能不是UTF-8先转为bytes再解码
try:
generated_text = generated_text.encode('latin-1').decode('utf-8')
except UnicodeError:
# 如果上面的转换失败,保持原样
pass
result_entry = []
result_entry.extend(row) # 将row的所有元素分别添加到result_entry
# 提取</think>后的内容作为最终回答
think_parts = generated_text.split("</think>")
if len(think_parts) > 1:
final_answer = think_parts[1].strip()
# 继续处理的文本改为最终回答部分
processing_text = final_answer
else:
# 如果没有</think>标记,使用原始文本
processing_text = generated_text
# 处理提取出的文本内容
try:
# JSON解析失败使用正则表达式
patterns = {
"primary_category": r'primary_category["\s]*[:]\s*["]*([^",\n}]+)',
"secondary_category": r'secondary_category["\s]*[:]\s*["]*([^",\n}]+)',
"tertiary_category": r'tertiary_category["\s]*[:]\s*["]*([^",\n}]+)',
"confidence": r'confidence["\s]*[:]\s*([0-9.]+)',
"reasoning": r'reasoning["\s]*[:]\s*["]*([^"}\n]+(?:\n[^"}\n]+)*)'
}
# 按顺序提取各个字段的值并追加到result_entry列表
for field, pattern in patterns.items():
match = re.search(pattern, processing_text, re.IGNORECASE)
if match:
# 确保匹配结果使用UTF-8编码
match_text = match.group(1).strip()
if isinstance(match_text, bytes):
match_text = match_text.decode('utf-8')
elif isinstance(match_text, str):
try:
match_text = match_text.encode('latin-1').decode('utf-8', errors='replace')
except UnicodeError:
pass
result_entry.append(match_text)
else:
result_entry.append("")
except Exception as e:
print(f"处理样本 {i} 时出错: {e}")
# 添加处理后的结果
results.append(result_entry)
# 计算并打印本次循环的执行时间
loop_end_time = time.time()
loop_duration = loop_end_time - loop_start_time
print(f"{i+1} 次模型推理时间: {loop_duration:.2f}")
df = pd.DataFrame(results)
excel_file = '500_Qwen3_8B_sort.xlsx'
# 获取数据库表的列名作为DataFrame的表头
columns = [description[0] for description in cursor.description]
columns.append('primary_category')
columns.append('secondary_category')
columns.append('tertiary_category')
columns.append('confidence')
columns.append('reasoning')
# 添加index列
df.columns = columns
# 将第三列移到第一列
cols = df.columns.tolist()
third_col = cols.pop(2) # 第三列索引为2
cols.insert(0, third_col)
df = df[cols]
df.to_excel(excel_file, index=False)
print(f"\n所有生成文本已保存到 {excel_file}")