添加code目录下的所有代码文件

This commit is contained in:
Shuang_Dong 2025-06-30 16:03:57 +08:00
parent 8f021a93d3
commit 7eec301831
7 changed files with 2167 additions and 0 deletions

164
code/README_CnOCR.md Normal file
View File

@ -0,0 +1,164 @@
# 视频字幕OCR提取器 - CnOCR集成
## 概述
字幕提取器现在支持三种OCR引擎
- **PaddleOCR**: 百度开源OCR引擎
- **EasyOCR**: 轻量级OCR引擎
- **CnOCR**: 中文OCR专用引擎新增
## CnOCR安装和配置
### 1. 自动安装(推荐)
```bash
cd code
python install_cnocr.py
```
### 2. 手动安装
```bash
# 安装CnOCR
pip install cnocr[ort-cpu] -i https://pypi.tuna.tsinghua.edu.cn/simple
# 创建模型目录
mkdir -p /root/autodl-tmp/llm/cnocr
# 设置环境变量
export CNOCR_HOME=/root/autodl-tmp/llm/cnocr
```
## 使用方法
### 1. 单独使用CnOCR
```bash
python ocr_subtitle_extractor.py your_video.mp4 -e cnocr
```
### 2. 使用所有OCR引擎
```bash
python ocr_subtitle_extractor.py your_video.mp4 -e all
```
### 3. 完整参数示例
```bash
python ocr_subtitle_extractor.py your_video.mp4 \
-e cnocr \
-l ch \
-i 30 \
-c 0.5 \
-o results \
-f json \
--position bottom
```
## 参数说明
- `-e, --engine`: OCR引擎选择
- `paddleocr`: 仅使用PaddleOCR
- `easyocr`: 仅使用EasyOCR
- `cnocr`: 仅使用CnOCR新增
- `all`: 使用所有三种引擎
- `-l, --language`: 语言设置
- `ch`: 中文
- `en`: 英文
- `ch_en`: 中英文混合
- `-i, --interval`: 帧采样间隔默认30帧
- `-c, --confidence`: 置信度阈值默认0.5
- `-o, --output`: 输出目录
- `-f, --format`: 输出格式json/txt/srt
- `--position`: 字幕区域位置full/center/bottom
## CnOCR特点
1. **专为中文优化**: 对中文识别效果更好
2. **轻量级**: 模型体积较小,运行速度快
3. **易于部署**: 安装简单,依赖少
4. **多种模型**: 支持多种检测和识别模型
## 测试CnOCR集成
```bash
python test_cnocr.py
```
这个脚本会:
1. 测试CnOCR安装
2. 测试模型下载
3. 测试字幕提取器集成
4. 显示测试结果
## 模型存储位置
所有CnOCR模型文件都会下载到
```
/root/autodl-tmp/llm/cnocr/
```
首次使用时会自动下载所需模型,请耐心等待。
## 输出格式
使用CnOCR时识别结果中的`engine`字段会标记为`"CnOCR"`,便于区分不同引擎的结果。
## 性能对比
| 引擎 | 中文识别 | 英文识别 | 速度 | 模型大小 |
|------|----------|----------|------|----------|
| PaddleOCR | 优秀 | 优秀 | 中等 | 大 |
| EasyOCR | 良好 | 优秀 | 较慢 | 大 |
| CnOCR | 优秀 | 良好 | 较快 | 中等 |
## 故障排除
### 1. 安装失败
```bash
# 更新pip
pip install --upgrade pip
# 使用国内源
pip install cnocr[ort-cpu] -i https://pypi.tuna.tsinghua.edu.cn/simple
```
### 2. 模型下载失败
```bash
# 检查网络连接
# 确保有足够的磁盘空间
# 重新运行安装脚本
python install_cnocr.py
```
### 3. 环境变量问题
```bash
# 在脚本开头添加
export CNOCR_HOME=/root/autodl-tmp/llm/cnocr
```
## 示例输出
```json
{
"video_path": "test_video.mp4",
"subtitles": [
{
"timestamp": 1.5,
"text": "这是一个测试字幕",
"confidence": 0.95,
"bbox": [[10, 20], [200, 20], [200, 50], [10, 50]],
"engine": "CnOCR"
}
],
"stats": {
"total_detections": 150,
"filtered_detections": 120,
"unique_texts": 50,
"average_confidence": 0.87
}
}
```

View File

@ -0,0 +1,484 @@
#!/usr/bin/env python3
from openai import OpenAI
import os
import base64
import time
import psutil
import subprocess
from datetime import datetime
class MemoryMonitor:
def __init__(self):
self.checkpoints = []
self.initial_memory = self.get_memory_info()
def get_memory_info(self):
"""获取当前内存使用情况"""
memory = psutil.virtual_memory()
gpu_info = self.get_gpu_memory()
process = psutil.Process()
memory_info = process.memory_info()
return {
"timestamp": datetime.now().isoformat(),
"system_memory_gb": memory.used / 1024**3,
"system_memory_percent": memory.percent,
"gpu_memory": gpu_info,
"process_memory_mb": memory_info.rss / 1024 / 1024
}
def get_gpu_memory(self):
"""获取GPU内存使用情况"""
try:
result = subprocess.run(['nvidia-smi', '--query-gpu=memory.total,memory.used,memory.free',
'--format=csv,noheader,nounits'],
capture_output=True, text=True, check=True)
lines = result.stdout.strip().split('\n')
gpu_info = []
for i, line in enumerate(lines):
parts = line.split(', ')
if len(parts) == 3:
total, used, free = map(int, parts)
gpu_info.append({
"gpu_id": i,
"total_mb": total,
"used_mb": used,
"free_mb": free,
"usage_percent": round(used / total * 100, 2)
})
return gpu_info
except:
return []
def checkpoint(self, name=""):
"""创建内存检查点"""
current_memory = self.get_memory_info()
if self.checkpoints:
last_memory = self.checkpoints[-1]["memory"]
memory_diff = {
"system_memory_gb": current_memory["system_memory_gb"] - last_memory["system_memory_gb"],
"process_memory_mb": current_memory["process_memory_mb"] - last_memory["process_memory_mb"],
}
# GPU内存差异
gpu_diff = []
if current_memory["gpu_memory"] and last_memory["gpu_memory"]:
for i in range(min(len(current_memory["gpu_memory"]), len(last_memory["gpu_memory"]))):
current_gpu = current_memory["gpu_memory"][i]["used_mb"]
last_gpu = last_memory["gpu_memory"][i]["used_mb"]
gpu_diff.append({
"gpu_id": i,
"used_mb_diff": current_gpu - last_gpu
})
memory_diff["gpu_memory"] = gpu_diff
else:
memory_diff = None
checkpoint = {
"name": name,
"memory": current_memory,
"memory_diff": memory_diff
}
self.checkpoints.append(checkpoint)
return checkpoint
def check_memory_risk(self):
"""检查内存风险等级"""
current = self.get_memory_info()
# 系统内存风险
sys_risk = ""
if current["system_memory_percent"] > 90:
sys_risk = ""
elif current["system_memory_percent"] > 80:
sys_risk = ""
# GPU内存风险
gpu_risk = ""
if current["gpu_memory"]:
max_gpu_usage = max(gpu["usage_percent"] for gpu in current["gpu_memory"])
if max_gpu_usage > 95:
gpu_risk = ""
elif max_gpu_usage > 85:
gpu_risk = ""
return {
"system_risk": sys_risk,
"gpu_risk": gpu_risk,
"current_memory": current
}
def print_memory_status(self, title=""):
"""打印当前内存状态"""
current = self.get_memory_info()
risk = self.check_memory_risk()
print(f"\n{'='*50}")
print(f"🔍 {title if title else '内存状态检查'}")
print(f"{'='*50}")
# 系统内存
risk_icon = {"": "", "": "⚠️", "": "🚨"}[risk["system_risk"]]
print(f"💾 系统内存: {current['system_memory_gb']:.1f} GB ({current['system_memory_percent']:.1f}%) {risk_icon}")
# GPU内存
if current["gpu_memory"]:
risk_icon = {"": "", "": "⚠️", "": "🚨"}[risk["gpu_risk"]]
for gpu in current["gpu_memory"]:
print(f"🎮 GPU {gpu['gpu_id']}: {gpu['used_mb']:.0f}/{gpu['total_mb']:.0f} MB ({gpu['usage_percent']:.1f}%) {risk_icon}")
# 进程内存
print(f"🔧 当前进程: {current['process_memory_mb']:.1f} MB")
return risk
def analyze_file_sizes(video_path, audio_path=None, txt_content=""):
"""分析文件大小和预估内存占用"""
print(f"\n{'='*50}")
print("📊 文件大小分析")
print(f"{'='*50}")
total_estimated_mb = 0
warnings = []
# 视频文件分析
if os.path.exists(video_path):
video_size = os.path.getsize(video_path)
video_size_mb = video_size / 1024 / 1024
base64_size_mb = video_size_mb * 1.33 # Base64编码增加约33%
memory_estimate_mb = base64_size_mb * 2 # 编码过程需要双倍内存
print(f"🎥 视频文件: {os.path.basename(video_path)}")
print(f" 原始大小: {video_size_mb:.2f} MB")
print(f" Base64后: {base64_size_mb:.2f} MB")
print(f" 内存估算: {memory_estimate_mb:.2f} MB")
total_estimated_mb += memory_estimate_mb
if base64_size_mb > 100:
warnings.append("视频文件过大(>100MB Base64)")
elif base64_size_mb > 50:
warnings.append("视频文件较大(>50MB Base64)")
# 音频文件分析
if audio_path and os.path.exists(audio_path):
audio_size = os.path.getsize(audio_path)
audio_size_mb = audio_size / 1024 / 1024
base64_size_mb = audio_size_mb * 1.33
memory_estimate_mb = base64_size_mb * 2
print(f"\n🎵 音频文件: {os.path.basename(audio_path)}")
print(f" 原始大小: {audio_size_mb:.2f} MB")
print(f" Base64后: {base64_size_mb:.2f} MB")
print(f" 内存估算: {memory_estimate_mb:.2f} MB")
total_estimated_mb += memory_estimate_mb
if base64_size_mb > 50:
warnings.append("音频文件过大(>50MB Base64)")
# 文本内容分析
if txt_content:
text_size_mb = len(txt_content.encode('utf-8')) / 1024 / 1024
print(f"\n📝 文本内容: {len(txt_content)} 字符 ({text_size_mb:.3f} MB)")
total_estimated_mb += text_size_mb
if len(txt_content) > 50000:
warnings.append("文本内容过长(>50k字符)")
print(f"\n📋 总估算内存: {total_estimated_mb:.2f} MB")
# 风险评估
if total_estimated_mb > 500:
print("🚨 高风险: 内容过大,强烈建议压缩或分段处理")
warnings.append("总内存占用过高(>500MB)")
elif total_estimated_mb > 200:
print("⚠️ 中风险: 建议监控内存使用")
warnings.append("总内存占用较高(>200MB)")
else:
print("✅ 低风险: 内存占用在可接受范围内")
return total_estimated_mb, warnings
# Base64 编码格式
def encode_video(video_path):
with open(video_path, "rb") as video_file:
return base64.b64encode(video_file.read()).decode("utf-8")
def encode_audio(audio_path):
with open(audio_path, "rb") as audio_file:
return base64.b64encode(audio_file.read()).decode("utf-8")
def read_txt_file(txt_path):
"""读取txt文件内容"""
try:
with open(txt_path, 'r', encoding='utf-8') as file:
content = file.read()
print(f"成功读取txt文件: {txt_path}")
print(f"文件内容长度: {len(content)} 字符")
return content
except FileNotFoundError:
print(f"错误: 找不到文件 {txt_path}")
return ""
except Exception as e:
print(f"读取文件时出错: {e}")
return ""
def save_result_to_txt(response_text, video_path, save_dir="results"):
"""将分析结果保存为TXT文件"""
os.makedirs(save_dir, exist_ok=True)
video_name = os.path.splitext(os.path.basename(video_path))[0]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
txt_filename = f"{video_name}_analysis_{timestamp}.txt"
txt_path = os.path.join(save_dir, txt_filename)
content = f"""视频分析结果
=====================================
视频文件: {video_path}
分析时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
=====================================
{response_text}
"""
try:
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(content)
print(f"\n✅ 分析结果已保存到: {txt_path}")
return txt_path
except Exception as e:
print(f"\n❌ 保存TXT文件失败: {e}")
return None
# 初始化内存监控器
monitor = MemoryMonitor()
STREAM_MODE = True
# 文件路径配置
video_path = "/root/autodl-tmp/video2audio/sample_demo_6.mp4"
audio_path = "/root/autodl-tmp/video2audio/sample_demo_6.wav"
#txt_path = "/root/autodl-tmp/hot_video_analyse/source/example_reference.txt"
# 初始内存检查
monitor.checkpoint("程序启动")
monitor.print_memory_status("程序启动时内存状态")
# 分析文件大小和预估内存占用
txt_content = ""
estimated_memory, warnings = analyze_file_sizes(video_path, txt_content=txt_content)
# 如果有警告,询问是否继续
if warnings:
print(f"\n⚠️ 发现以下潜在问题:")
for warning in warnings:
print(f" - {warning}")
print(f"\n建议:")
print(f" - 使用更小的测试文件")
print(f" - 监控内存使用情况")
print(f" - 如遇到错误,尝试压缩文件")
# 编码前内存检查
monitor.checkpoint("开始编码前")
risk_before = monitor.check_memory_risk()
if risk_before["system_risk"] == "" or risk_before["gpu_risk"] == "":
print(f"\n🚨 警告: 当前内存使用率已经很高,继续可能导致内存溢出!")
print(f" 系统内存风险: {risk_before['system_risk']}")
print(f" GPU内存风险: {risk_before['gpu_risk']}")
print("\n开始编码文件...")
encode_start_time = time.time()
try:
base64_video = encode_video(video_path)
print(f"✅ 视频编码完成")
except Exception as e:
print(f"❌ 视频编码失败: {e}")
monitor.print_memory_status("编码失败时内存状态")
exit(1)
base64_audio = encode_audio(audio_path)
# 编码后内存检查
monitor.checkpoint("编码完成")
encode_end_time = time.time()
encode_duration = encode_end_time - encode_start_time
print(f"📁 文件编码完成,耗时: {encode_duration:.2f}")
# 检查编码后内存变化
last_checkpoint = monitor.checkpoints[-1]
if last_checkpoint["memory_diff"]:
diff = last_checkpoint["memory_diff"]
print(f"📊 编码过程内存变化:")
print(f" 进程内存增加: {diff['process_memory_mb']:+.1f} MB")
if diff["gpu_memory"]:
for gpu_diff in diff["gpu_memory"]:
print(f" GPU {gpu_diff['gpu_id']} 内存变化: {gpu_diff['used_mb_diff']:+.0f} MB")
client = OpenAI(
api_key="EMPTY",
base_url="http://localhost:8000/v1",
)
# 构建content列表
content_list = [
{
"type": "video_url",
"video_url": {"url": f"data:video/mp4;base64,{base64_video}"},
"type": "audio_url",
"audio_url": {"url": f"data:audio/wav;base64,{base64_audio}"},
}
]
# 如果txt文件有内容添加到content中
if txt_content.strip():
content_list.append({
"type": "text",
"text": f"参考文档内容:\n{txt_content}\n\n"
})
# 添加主要提示文本(简化版以减少内存使用)
content_list.append({
"type": "text",
"text": """请分析这个抖音短视频的内容:
1. **口播内容**转录视频中的语音内容
2. **字幕文字**识别画面中的文字和字幕
3. **勾子分析**分析视频的开头勾子策略
请用JSON格式输出结果
{
"口播分析": {"是否有口播": "", "口播内容": "", "讲话时长": ""},
"字幕分析": {"是否有字幕": "", "字幕内容": "", "字幕位置": ""},
"勾子分析": {"勾子类型": "", "勾子公式": "", "勾子内容": ""}
}"""
})
# API请求前内存检查
monitor.checkpoint("API请求前")
monitor.print_memory_status("API请求前内存状态")
print(f"\n🚀 开始请求API...")
print(f"📅 请求时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(f"🔄 Stream模式: {STREAM_MODE}")
print(f"📋 Content项目数量: {len(content_list)}")
# 计算请求大小
total_request_size = sum(len(str(content)) for content in content_list)
print(f"📏 请求总大小: {total_request_size/1024/1024:.2f} MB")
api_start_time = time.time()
try:
completion = client.chat.completions.create(
model="/root/autodl-tmp/llm/Qwen-omni",
messages=[
{
"role": "system",
"content": [{"type":"text","text": "You are a helpful assistant."}]
},
{
"role": "user",
"content": content_list
}
],
stream=STREAM_MODE,
stream_options={"include_usage": True} if STREAM_MODE else None,
max_tokens=1024, # 限制输出长度以节省内存
)
if STREAM_MODE:
full_response = ""
usage_info = None
first_token_time = None
token_count = 0
print("✨ 正在生成回复...")
for chunk in completion:
if chunk.choices:
delta = chunk.choices[0].delta
if delta.content:
if first_token_time is None:
first_token_time = time.time()
first_token_delay = first_token_time - api_start_time
print(f"🚀 首个token延迟: {first_token_delay:.2f}")
full_response += delta.content
token_count += 1
else:
usage_info = chunk.usage
api_end_time = time.time()
total_duration = api_end_time - api_start_time
print("\n" + "="*50)
print("📝 完整回复:")
print("="*50)
print(full_response)
# 保存结果为TXT文件
txt_file_path = save_result_to_txt(full_response, video_path)
# API完成后内存检查
monitor.checkpoint("API完成")
# 输出时间统计信息
print("\n" + "="*50)
print("⏱️ 时间统计:")
print("="*50)
print(f"📁 文件编码时间: {encode_duration:.2f}")
if first_token_time:
print(f"🚀 首个token延迟: {first_token_delay:.2f}")
generation_time = api_end_time - first_token_time
print(f"⚡ 内容生成时间: {generation_time:.2f}")
print(f"🕐 API总响应时间: {total_duration:.2f}")
print(f"📊 生成token数量: {token_count}")
if first_token_time and token_count > 0:
tokens_per_second = token_count / generation_time
print(f"🔥 生成速度: {tokens_per_second:.2f} tokens/秒")
print(f"⏰ 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
if usage_info:
print(f"\n📈 使用情况: {usage_info}")
except Exception as e:
print(f"\n❌ API请求失败!")
print(f"错误类型: {type(e)}")
print(f"错误信息: {e}")
# 错误时进行内存检查
monitor.checkpoint("API错误")
monitor.print_memory_status("API错误时内存状态")
# 分析可能的原因
if "Internal Server Error" in str(e) or "OutOfMemoryError" in str(e):
print(f"\n💡 可能的内存溢出原因:")
print(f" - 视频文件过大 ({estimated_memory:.1f} MB)")
print(f" - GPU内存不足")
print(f" - 系统内存不足")
print(f"\n建议解决方案:")
print(f" - 使用更小的视频文件")
print(f" - 重启vLLM服务释放GPU内存")
print(f" - 降低max_tokens限制")
# 最终内存状态报告
print(f"\n{'='*60}")
print("📊 最终内存使用报告")
print(f"{'='*60}")
for i, checkpoint in enumerate(monitor.checkpoints):
print(f"{i+1}. {checkpoint['name']}")
if checkpoint['memory_diff']:
diff = checkpoint['memory_diff']
if abs(diff['process_memory_mb']) > 10: # 只显示显著变化
print(f" 进程内存变化: {diff['process_memory_mb']:+.1f} MB")
if diff['gpu_memory']:
for gpu_diff in diff['gpu_memory']:
if abs(gpu_diff['used_mb_diff']) > 50: # 只显示显著变化
print(f" GPU {gpu_diff['gpu_id']} 变化: {gpu_diff['used_mb_diff']:+.0f} MB")
monitor.print_memory_status("程序结束时内存状态")

View File

@ -0,0 +1,337 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
批量视频字幕提取器
支持批量处理多个视频文件提取字幕
支持PaddleOCREasyOCR和CnOCR三种引擎
"""
import os
import sys
import time
import json
import argparse
from pathlib import Path
from datetime import datetime
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
# 添加当前目录到路径以导入OCR模块
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ocr_subtitle_extractor import VideoSubtitleExtractor
# 设置OCR模型路径环境变量
os.environ['EASYOCR_MODULE_PATH'] = '/root/autodl-tmp/llm/easyocr'
os.environ['CNOCR_HOME'] = '/root/autodl-tmp/llm/cnocr'
# 设置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class BatchSubtitleExtractor:
"""批量视频字幕提取器"""
def __init__(self, ocr_engine="paddleocr", language="ch", max_workers=2):
"""
初始化批量提取器
Args:
ocr_engine: OCR引擎 ("paddleocr", "easyocr", "cnocr", "all")
language: 语言设置 ("ch", "en", "ch_en")
max_workers: 最大并行工作数
"""
self.ocr_engine = ocr_engine
self.language = language
self.max_workers = max_workers
self.extractor = VideoSubtitleExtractor(ocr_engine=ocr_engine, language=language)
def find_video_files(self, input_dir):
"""查找目录中的所有视频文件"""
video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm']
video_files = []
input_path = Path(input_dir)
if input_path.is_file():
# 单个文件
if input_path.suffix.lower() in video_extensions:
video_files.append(input_path)
elif input_path.is_dir():
# 目录中的所有视频文件
for ext in video_extensions:
video_files.extend(input_path.glob(f"*{ext}"))
video_files.extend(input_path.glob(f"*{ext.upper()}"))
return sorted(video_files)
def extract_single_video(self, video_path, output_dir, **kwargs):
"""
处理单个视频文件
Args:
video_path: 视频文件路径
output_dir: 输出目录
**kwargs: 其他参数
Returns:
dict: 处理结果
"""
video_path = Path(video_path)
video_name = video_path.stem
logger.info(f"开始处理视频: {video_path}")
start_time = time.time()
try:
# 提取字幕
results = self.extractor.extract_subtitles_from_video(
str(video_path),
sample_interval=kwargs.get('interval', 30),
confidence_threshold=kwargs.get('confidence', 0.5),
subtitle_position=kwargs.get('position', 'bottom')
)
# 保存结果
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
for format_type in kwargs.get('formats', ['json']):
output_file = output_path / f"{video_name}_subtitles.{format_type}"
self.extractor.save_results(results, output_file, format_type)
process_time = time.time() - start_time
results['process_time'] = process_time
results['video_path'] = str(video_path)
results['success'] = True
# 统计位置信息
subtitles_with_bbox = [s for s in results['subtitles'] if s.get('bbox')]
bbox_coverage = len(subtitles_with_bbox) / len(results['subtitles']) * 100 if results['subtitles'] else 0
logger.info(f"完成处理视频: {video_path} (耗时: {process_time:.2f}秒)")
logger.info(f" 字幕总数: {len(results['subtitles'])}")
logger.info(f" 有位置信息: {len(subtitles_with_bbox)}")
logger.info(f" 位置信息覆盖率: {bbox_coverage:.1f}%")
return {
'video_path': str(video_path),
'success': True,
'process_time': process_time,
'subtitle_count': results['stats']['filtered_detections'],
'text_length': results['stats']['text_length'],
'total_subtitles': len(results['subtitles']),
'subtitles_with_bbox': len(subtitles_with_bbox),
'bbox_coverage': bbox_coverage,
'output_files': [str(output_path / f"{video_name}_subtitles.{fmt}") for fmt in kwargs.get('formats', ['json'])]
}
except Exception as e:
error_msg = f"处理视频 {video_path} 时出错: {str(e)}"
logger.error(error_msg)
return {
'video_path': str(video_path),
'success': False,
'error': error_msg,
'process_time': time.time() - start_time
}
def extract_batch(self, input_dir, output_dir, parallel=True, **kwargs):
"""
批量提取字幕
Args:
input_dir: 输入目录或文件
output_dir: 输出目录
parallel: 是否并行处理
**kwargs: 其他参数
Returns:
dict: 批量处理结果
"""
logger.info(f"开始批量字幕提取")
logger.info(f"输入: {input_dir}")
logger.info(f"输出目录: {output_dir}")
logger.info(f"OCR引擎: {self.ocr_engine}")
logger.info(f"字幕位置: {kwargs.get('position', 'bottom')}")
logger.info(f"并行处理: {parallel}")
start_time = time.time()
# 查找视频文件
video_files = self.find_video_files(input_dir)
if not video_files:
logger.warning(f"{input_dir} 中未找到视频文件")
return {
'success': False,
'message': '未找到视频文件',
'total_files': 0,
'results': []
}
logger.info(f"找到 {len(video_files)} 个视频文件")
results = []
if parallel and len(video_files) > 1:
# 并行处理
logger.info(f"使用 {self.max_workers} 个并行工作进程")
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
# 提交任务
future_to_video = {
executor.submit(self.extract_single_video, video_file, output_dir, **kwargs): video_file
for video_file in video_files
}
# 收集结果
for future in as_completed(future_to_video):
video_file = future_to_video[future]
try:
result = future.result()
results.append(result)
# 显示进度
progress = len(results) / len(video_files) * 100
logger.info(f"批量处理进度: {progress:.1f}% ({len(results)}/{len(video_files)})")
except Exception as e:
logger.error(f"处理视频 {video_file} 时发生异常: {str(e)}")
results.append({
'video_path': str(video_file),
'success': False,
'error': str(e)
})
else:
# 串行处理
for i, video_file in enumerate(video_files, 1):
logger.info(f"处理第 {i}/{len(video_files)} 个视频")
result = self.extract_single_video(video_file, output_dir, **kwargs)
results.append(result)
# 显示进度
progress = i / len(video_files) * 100
logger.info(f"批量处理进度: {progress:.1f}%")
total_time = time.time() - start_time
# 统计结果
success_count = sum(1 for r in results if r['success'])
failed_count = len(results) - success_count
total_subtitles = sum(r.get('subtitle_count', 0) for r in results if r['success'])
total_text_length = sum(r.get('text_length', 0) for r in results if r['success'])
# 统计位置信息
total_subtitles_raw = sum(r.get('total_subtitles', 0) for r in results if r['success'])
total_subtitles_with_bbox = sum(r.get('subtitles_with_bbox', 0) for r in results if r['success'])
overall_bbox_coverage = total_subtitles_with_bbox / total_subtitles_raw * 100 if total_subtitles_raw > 0 else 0
batch_result = {
'success': True,
'total_time': total_time,
'total_files': len(video_files),
'success_count': success_count,
'failed_count': failed_count,
'total_subtitles': total_subtitles,
'total_text_length': total_text_length,
'total_subtitles_raw': total_subtitles_raw,
'total_subtitles_with_bbox': total_subtitles_with_bbox,
'overall_bbox_coverage': overall_bbox_coverage,
'output_directory': output_dir,
'ocr_engine': self.ocr_engine,
'timestamp': datetime.now().isoformat(),
'results': results
}
# 保存批量处理报告
report_file = Path(output_dir) / "batch_report.json"
with open(report_file, 'w', encoding='utf-8') as f:
json.dump(batch_result, f, ensure_ascii=False, indent=2)
logger.info(f"批量处理完成!")
logger.info(f"总文件数: {len(video_files)}")
logger.info(f"成功: {success_count}, 失败: {failed_count}")
logger.info(f"总耗时: {total_time:.2f}")
logger.info(f"提取字幕: {total_subtitles}")
logger.info(f"文本长度: {total_text_length} 字符")
logger.info(f"位置信息统计:")
logger.info(f" 总字幕数: {total_subtitles_raw}")
logger.info(f" 有位置信息: {total_subtitles_with_bbox}")
logger.info(f" 位置信息覆盖率: {overall_bbox_coverage:.1f}%")
logger.info(f"处理报告: {report_file}")
return batch_result
def main():
"""主函数"""
parser = argparse.ArgumentParser(description="批量视频字幕提取器")
parser.add_argument("input", help="输入视频文件或目录")
parser.add_argument("-e", "--engine", default="cnocr",
choices=["paddleocr", "easyocr", "cnocr", "all"],
help="OCR引擎 (默认: paddleocr)")
parser.add_argument("-l", "--language", default="ch",
choices=["ch", "en", "ch_en"],
help="语言设置 (默认: ch)")
parser.add_argument("-i", "--interval", type=int, default=30,
help="帧采样间隔 (默认: 30)")
parser.add_argument("-c", "--confidence", type=float, default=0.5,
help="置信度阈值 (默认: 0.5)")
parser.add_argument("-o", "--output", default="batch_subtitles",
help="输出目录 (默认: batch_subtitles)")
parser.add_argument("-f", "--formats", nargs='+', default=["json"],
choices=["json", "txt", "srt"],
help="输出格式 (默认: json)")
parser.add_argument("--position", default="full",
choices=["full", "center", "bottom"],
help="字幕区域位置 (full=全屏, center=居中0.5-0.8, bottom=居下0.7-1.0)")
parser.add_argument("--workers", type=int, default=2,
help="并行工作进程数 (默认: 2)")
parser.add_argument("--no-parallel", action="store_true",
help="禁用并行处理")
args = parser.parse_args()
# 创建批量提取器
batch_extractor = BatchSubtitleExtractor(
ocr_engine=args.engine,
language=args.language,
max_workers=args.workers
)
try:
# 执行批量提取
result = batch_extractor.extract_batch(
input_dir=args.input,
output_dir=args.output,
parallel=not args.no_parallel,
interval=args.interval,
confidence=args.confidence,
formats=args.formats,
position=args.position
)
if result['success']:
print(f"\n✅ 批量字幕提取完成!")
print(f"📁 输出目录: {args.output}")
print(f"📊 成功处理: {result['success_count']}/{result['total_files']} 个视频")
if result['failed_count'] > 0:
print(f"❌ 失败: {result['failed_count']}")
print(f"⏱️ 总耗时: {result['total_time']:.2f}")
print(f"📝 字幕片段: {result['total_subtitles']}")
print(f"📏 文本长度: {result['total_text_length']} 字符")
print(f"📍 位置信息统计:")
print(f" 总字幕数: {result['total_subtitles_raw']}")
print(f" 有位置信息: {result['total_subtitles_with_bbox']}")
print(f" 位置信息覆盖率: {result['overall_bbox_coverage']:.1f}%")
else:
print(f"\n❌ 批量处理失败: {result.get('message', '未知错误')}")
except Exception as e:
logger.error(f"批量处理出错: {str(e)}")
print(f"\n❌ 批量处理出错: {str(e)}")
if __name__ == "__main__":
main()

545
code/copy_video.py Normal file
View File

@ -0,0 +1,545 @@
from openai import OpenAI
import os
import base64
import time
from datetime import datetime
# Base64 编码格式
def encode_video(video_path):
with open(video_path, "rb") as video_file:
return base64.b64encode(video_file.read()).decode("utf-8")
def encode_audio(audio_path):
with open(audio_path, "rb") as audio_file:
return base64.b64encode(audio_file.read()).decode("utf-8")
def read_txt_file(txt_path):
"""读取txt文件内容"""
try:
with open(txt_path, 'r', encoding='utf-8') as file:
content = file.read()
print(f"成功读取txt文件: {txt_path}")
print(f"文件内容长度: {len(content)} 字符")
return content
except FileNotFoundError:
print(f"错误: 找不到文件 {txt_path}")
return ""
except Exception as e:
print(f"读取文件时出错: {e}")
return ""
def read_json_file(json_path):
"""读取JSON文件内容"""
try:
import json
with open(json_path, 'r', encoding='utf-8') as file:
data = json.load(file)
print(f"成功读取JSON文件: {json_path}")
return data
except FileNotFoundError:
print(f"错误: 找不到文件 {json_path}")
return None
except json.JSONDecodeError as e:
print(f"JSON解析错误: {e}")
return None
except Exception as e:
print(f"读取JSON文件时出错: {e}")
return None
def format_speech_json(speech_data):
"""格式化口播转文字JSON数据支持SenseVoice格式"""
if not speech_data:
return ""
formatted_text = "【口播转文字内容】\n"
if isinstance(speech_data, dict):
# 新SenseVoice格式 - 处理raw_result
if 'raw_result' in speech_data:
raw_result = speech_data['raw_result']
if isinstance(raw_result, list) and len(raw_result) > 0:
# 提取所有文本内容
all_texts = []
for item in raw_result:
if isinstance(item, dict) and 'text' in item:
text = item['text']
# 清理SenseVoice的特殊标签
import re
clean_text = re.sub(r'<\|[^|]+\|>', '', text)
clean_text = ' '.join(clean_text.split())
if clean_text.strip():
all_texts.append(clean_text.strip())
if all_texts:
formatted_text += f"完整转录文本: {' '.join(all_texts)}\n"
# 基本信息
if 'model' in speech_data:
formatted_text += f"转录模型: {speech_data['model']}\n"
if 'transcribe_time' in speech_data:
formatted_text += f"转录耗时: {speech_data['transcribe_time']:.3f}\n"
if 'file_path' in speech_data:
formatted_text += f"音频文件: {speech_data['file_path']}\n"
# 旧SenseVoice格式兼容
elif 'clean_text' in speech_data:
formatted_text += f"完整转录文本: {speech_data['clean_text']}\n"
if 'model' in speech_data:
formatted_text += f"转录模型: {speech_data['model']}\n"
if 'transcribe_time' in speech_data:
formatted_text += f"转录耗时: {speech_data['transcribe_time']:.3f}\n"
# 情绪分析
if 'emotions' in speech_data and speech_data['emotions']:
emotions = [emotion.get('emotion', '') for emotion in speech_data['emotions']]
formatted_text += f"情绪分析: {', '.join(emotions)}\n"
# 背景事件
if 'events' in speech_data and speech_data['events']:
events = [event.get('event', '') for event in speech_data['events']]
formatted_text += f"音频事件: {', '.join(events)}\n"
# 如果是字幕提取器的格式(备用)
elif 'continuous_text' in speech_data:
formatted_text += f"完整文本: {speech_data['continuous_text']}\n"
if 'stats' in speech_data:
stats = speech_data['stats']
formatted_text += f"统计信息: 检测数量{stats.get('filtered_detections', 0)}个,"
formatted_text += f"平均置信度{stats.get('average_confidence', 0):.3f}\n"
return formatted_text
def format_whisper_json(whisper_data):
"""格式化Whisper口播转文字JSON数据"""
if not whisper_data:
return ""
formatted_text = "【Whisper口播转文字内容】\n"
if isinstance(whisper_data, dict):
# 基本信息
# 详细时间轴 - 显示所有片段
if 'segments' in whisper_data and len(whisper_data['segments']) > 0:
formatted_text += "\n详细时间轴:\n"
for segment in whisper_data['segments']:
segment_id = segment.get('id', 0)
start_time = segment.get('start', 0)
end_time = segment.get('end', 0)
text = segment.get('text', '')
formatted_text += f" id:{segment_id}, start:{start_time:.2f}, end:{end_time:.2f}, text:{text}\n"
return formatted_text
def format_ocr_json(ocr_data):
"""格式化OCR字幕转文字JSON数据"""
if not ocr_data:
return ""
formatted_text = "【OCR字幕识别内容】\n"
# 如果是字幕提取器的格式
if isinstance(ocr_data, dict):
# 显示使用的OCR引擎
# if 'ocr_engine' in ocr_data:
# formatted_text += f"OCR引擎: {ocr_data['ocr_engine']}\n"
if 'continuous_text' in ocr_data:
formatted_text += f"完整字幕文本: {ocr_data['continuous_text']}\n"
# if 'subtitles' in ocr_data and len(ocr_data['subtitles']) > 0:
# formatted_text += "详细字幕时间轴:\n"
# for subtitle in ocr_data['subtitles'][:10]: # 只显示前10个避免过长
# timestamp = subtitle.get('timestamp', 0)
# text = subtitle.get('text', '')
# engine = subtitle.get('engine', '')
# confidence = subtitle.get('confidence', 0)
# formatted_text += f" {timestamp:.2f}s [{engine}|{confidence:.3f}]: {text}\n"
# if len(ocr_data['subtitles']) > 10:
# formatted_text += f" ... (还有{len(ocr_data['subtitles']) - 10}个字幕片段)\n"
return formatted_text
def format_clip_json(clip_data):
"""格式化视频转场分析JSON数据"""
if not clip_data:
return ""
formatted_text = "【视频转场分析内容】\n"
if isinstance(clip_data, dict):
# 显示视频基本信息
if 'video_name' in clip_data:
formatted_text += f"视频名称: {clip_data['video_name']}\n"
if 'analysis_time' in clip_data:
formatted_text += f"分析时间: {clip_data['analysis_time']}\n"
if 'total_scenes' in clip_data:
formatted_text += f"检测到场景数: {clip_data['total_scenes']}\n"
# 详细场景信息
if 'scenes' in clip_data and len(clip_data['scenes']) > 0:
formatted_text += "\n详细场景信息:\n"
for i, scene in enumerate(clip_data['scenes'], 1):
formatted_text += f"scenes {i}:\n"
formatted_text += f" start_time: {scene.get('start_time', 0):.2f}\n"
formatted_text += f" end_time: {scene.get('end_time', 0):.2f}\n"
formatted_text += f" duration: {scene.get('duration', 0):.2f}\n"
formatted_text += f" type: {scene.get('type')}\n"
formatted_text += "\n"
return formatted_text
def save_result_to_txt(response_text, video_path, save_dir="/root/autodl-tmp/final_output"):
"""将分析结果保存为TXT文件"""
# 创建保存目录
os.makedirs(save_dir, exist_ok=True)
# 生成文件名(基于视频文件名和时间戳)
video_name = os.path.splitext(os.path.basename(video_path))[0]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
txt_filename = f"{video_name}_analysis_{timestamp}.txt"
txt_path = os.path.join(save_dir, txt_filename)
# 准备保存内容(添加头部信息)
content = f"""视频分析结果
=====================================
视频文件: {video_path}
分析时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
=====================================
{response_text}
"""
# 保存到文件
try:
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(content)
print(f"\n✅ 分析结果已保存到: {txt_path}")
return txt_path
except Exception as e:
print(f"\n❌ 保存TXT文件失败: {e}")
return None
STREAM_MODE = True
# 文件路径配置
video_path = "/root/autodl-tmp/new/老挝泼水节.mp4"
#audio_path = "/root/autodl-tmp/video2audio/sample_demo_6.wav"
#txt_path = "/root/autodl-tmp/hot_video_analyse/source/example_reference.txt" # 使用示例参考文档
# JSON文件路径配置
speech_json_path = "/root/autodl-tmp/new_sensevoice/老挝泼水节_sensevoice.json" # 口播转文字JSON文件
ocr_json_path = "/root/autodl-tmp/new_cnocr/老挝泼水节_subtitles.json" # OCR字幕转文字JSON文件
#clip_json_path = "/root/autodl-tmp/02_VideoSplitter/VideoSplitter_output/shou_gonglve_3_scenes.json"
whisper_json_path = "/root/autodl-tmp/new_whisper/老挝泼水节_transcript.json" # Whisper转文字JSON文件
# 编码文件
print("开始编码文件...")
encode_start_time = time.time()
base64_video = encode_video(video_path)
#base64_audio = encode_audio(audio_path)
#txt_content = read_txt_file(txt_path)
#读取JSON文件内容
print("读取JSON文件...")
speech_data = read_json_file(speech_json_path)
ocr_data = read_json_file(ocr_json_path)
#clip_data = read_json_file(clip_json_path)
whisper_data = read_json_file(whisper_json_path)
# 格式化JSON内容
speech_content = format_speech_json(speech_data)
ocr_content = format_ocr_json(ocr_data)
#clip_content = format_clip_json(clip_data)
whisper_content = format_whisper_json(whisper_data)
# # 合并内容
txt_content = ""
# if speech_content:
# txt_content += speech_content + "\n\n"
if ocr_content:
txt_content += ocr_content + "\n\n"
# if clip_content:
# txt_content += clip_content + "\n\n"
if whisper_content:
txt_content += whisper_content + "\n\n"
print(f"合并后的参考内容长度: {len(txt_content)} 字符")
print(txt_content)
encode_end_time = time.time()
encode_duration = encode_end_time - encode_start_time
print(f"文件编码完成,耗时: {encode_duration:.2f}")
client = OpenAI(
# 若没有配置环境变量请用百炼API Key将下行替换为api_key="sk-xxx"
api_key="EMPTY",
base_url="http://localhost:8000/v1",
)
# 构建content列表
content_list = [
{
# 直接传入视频文件时请将type的值设置为video_url
"type": "video_url",
"video_url": {"url": f"data:video/mp4;base64,{base64_video}"},
}
# ,
# {
# "type": "audio_url",
# "audio_url": {"url": f"data:audio/wav;base64,{base64_audio}"},
# }
]
# 如果txt文件有内容添加到content中
if txt_content.strip():
content_list.append({
"type": "text",
"text": f"参考资料内容:\n{txt_content}\n\n",
"need": "第一部分是视频内容,第二部分是视频的字幕时间轴内容,第三部分是口播的字幕时间轴内容"
})
# 添加主要提示文本
content_list.append({
"type": "text",
"text": """🎥 **抖音短视频内容分析专家**
## 任务背景
您是一位经验丰富的视频导演和编辑需要基于以上两个时间轴数据和视频内容为视频写一个完整流畅的脚本
请对这个抖音短视频进行详细的内容分析重点关注以下三个方面
## 🎤 一、口播内容提取
请仔细听取视频中的语音内容完整转录
- **完整口播转录**参考口播的字幕时间轴内容和视频内容逐字逐句转录所有口语表达
- **语音时长**估算总的讲话时长
## 📝 二、字幕文字识别
请识别视频画面中出现的所有文字内容
- **屏幕字幕**参考口播的字幕时间轴内容和视频内容识别字幕
- **标题文字**识别停靠时间稍长的视频开头中间结尾出现的大标题和贴图
## 🎬 三、转场效果分析
请仔细观察视频中的转场效果并且结合参考资料中的时间轴内容请你整体分析一下视频比如几个画面出现第一个转场等.
转场的time_start","time_end","textIdx"请严格按照参考资料中的口播内容的时间戳start,end,id和字幕内容的时间戳“开始时间“”结束时间“
填写不要自己生成
## 📊 输出格式要求
## 视频内容分析
请按照以下JSON格式输出视频描述
{
"total_Oral broadcasting":"请你生成一个完整的口播内容。",
"summary": "请用一句话总结视频的核心内容,突出视频的主要卖点和价值主张",
"content": [
{
"type": "cut",
"scenes": 1,
"time_start": 0.0,
"time_end": 2.0,
"talk": "请将对应时间的口播或字幕信息,填入此",
"description": "详细描述这个镜头的画面内容、人物动作、场景特点等"
},
{
"type": "cut",
"scenes": 2,
"time_start": 2.0,
"time_end": 4.5,
"talk": "请将对应时间的口播或字幕信息,填入此",
"description": "描述这个镜头的具体内容,包括画面细节、转场效果等"
},
{
"type": "cut",
"scenes": 3,
"time_start": 4.5,
"time_end": 6.0,
"talk": "请将对应时间的口播或字幕信息,填入此",
"description": "描述这个镜头的具体内容,包括画面细节、转场效果等"
}
]
}
## 输出要求
1. summary用一句话概括视频核心内容突出主要卖点
2. content按时间顺序交替描述镜头和转场
- 镜头(lens)描述
* textIdx镜头序号从1开始递增
* time_start开始时间精确到小数点后一位
* time_end结束时间精确到小数点后一位
* talk该镜头中的对话或文字内容
* description详细描述镜头内容包括
- 画面构图和场景
- 人物动作和表情
- 重要道具和元素
- 特殊效果和转场
## 注意事项
1. 保持描述简洁明了但要有足够的细节
2. 突出视频的亮点和特色
3. 确保时间戳的准确性
4. 对话内容要符合视频画面
5. 整体风格要统一连贯
6. 每个镜头的描述要包含关键信息
## 示例内容描述
1. 镜头1
- 开场特写镜头展示产品外观
- 画面从模糊到清晰突出产品细节
- 背景音乐渐入营造氛围
- 文字提示"全新升级,品质保证"
2. 转场1-2
- 类型平滑滑动
- 目的自然过渡到使用场景
- 效果画面从产品特写平滑滑向使用场景
3. 镜头2
- 中景展示使用场景
- 人物自然流畅的动作展示
- 光线明亮突出产品效果
- 文字说明"简单操作,轻松上手"
4. 转场2-3
- 类型快速缩放
- 目的突出产品核心功能
- 效果画面快速聚焦到产品关键部位
5. 镜头3
- 特写展示产品核心功能
- 慢动作展示关键细节
- 画面色彩鲜明对比强烈
- 文字强调"专业性能,值得信赖"
请根据以上要求分析视频并输出JSON格式的描述
请开始详细分析这个抖音短视频"""
})
print(f"\n开始请求API...")
print(f"请求时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(f"Stream模式: {STREAM_MODE}")
print(f"Content项目数量: {len(content_list)}")
# 记录API请求开始时间
api_start_time = time.time()
completion = client.chat.completions.create(
model="/root/autodl-tmp/llm/Qwen-omni",
messages=[
{
"role": "system",
"content": [{"type":"text","text": "You are a helpful assistant."}]
},
{
"role": "user",
"content": content_list
}
],
stream=STREAM_MODE,
stream_options={"include_usage": True} if STREAM_MODE else None,
temperature=0.3
)
if STREAM_MODE:
# 流式输出 - 拼接完整回复
full_response = ""
usage_info = None
# 记录第一个token的时间
first_token_time = None
token_count = 0
print("正在生成回复...")
for chunk in completion:
if chunk.choices:
delta = chunk.choices[0].delta
if delta.content:
# 记录第一个token的时间
if first_token_time is None:
first_token_time = time.time()
first_token_delay = first_token_time - api_start_time
print(f"首个token延迟: {first_token_delay:.2f}")
# 拼接内容
full_response += delta.content
token_count += 1
# 实时显示(可选)
#print(delta.content, end='', flush=True)
else:
# 保存使用情况信息
usage_info = chunk.usage
# 记录API请求结束时间
api_end_time = time.time()
total_duration = api_end_time - api_start_time
# 输出完整的响应
print("\n" + "="*50)
print("完整回复:")
print("="*50)
print(full_response)
# 保存结果为TXT文件
txt_file_path = save_result_to_txt(full_response + "total_duration:" + str(total_duration), video_path)
# 输出时间统计信息
print("\n" + "="*50)
print("⏱️ 时间统计:")
print("="*50)
print(f"📁 文件编码时间: {encode_duration:.2f}")
if first_token_time:
print(f"🚀 首个token延迟: {first_token_delay:.2f}")
generation_time = api_end_time - first_token_time
print(f"⚡ 内容生成时间: {generation_time:.2f}")
print(f"🕐 API总响应时间: {total_duration:.2f}")
print(f"📊 生成token数量: {token_count}")
if first_token_time and token_count > 0:
tokens_per_second = token_count / generation_time
print(f"🔥 生成速度: {tokens_per_second:.2f} tokens/秒")
print(f"⏰ 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
# 输出使用情况信息
if usage_info:
print("\n" + "="*50)
print("📈 使用情况:")
print("="*50)
print(usage_info)
else:
# 非流式输出 - 直接输出完整响应
api_end_time = time.time()
total_duration = api_end_time - api_start_time
print("非流式输出模式:")
print("完整回复:")
print("="*50)
print(completion.choices[0].message.content)
# 保存结果为TXT文件
txt_file_path = save_result_to_txt(completion.choices[0].message.content, video_path)
# 输出时间统计信息
print("\n" + "="*50)
print("⏱️ 时间统计:")
print("="*50)
print(f"📁 文件编码时间: {encode_duration:.2f}")
print(f"🕐 API总响应时间: {total_duration:.2f}")
print(f"⏰ 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
# 输出使用情况信息
if hasattr(completion, 'usage') and completion.usage:
print("\n" + "="*50)
print("📈 使用情况:")
print("="*50)
print(completion.usage)

194
code/director_prompt.py Normal file
View File

@ -0,0 +1,194 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
导演编辑提示词生成器
整合OCR字幕和Whisper口播时间轴生成专业视频脚本
"""
def generate_director_prompt(ocr_timeline, whisper_timeline, video_info=None):
"""
生成导演编辑提示词
Args:
ocr_timeline: OCR字幕时间轴数据
whisper_timeline: Whisper口播时间轴数据
video_info: 视频基本信息可选
Returns:
str: 导演编辑提示词
"""
prompt = f"""
# 导演编辑任务:视频脚本整合与优化
## 任务背景
您是一位经验丰富的视频导演和编辑需要基于以下两个时间轴数据为视频创作一个完整流畅的脚本
## 输入数据
### OCR字幕时间轴视觉文字内容
{ocr_timeline}
### Whisper口播时间轴音频内容
{whisper_timeline}
{video_info if video_info else ""}
## 导演编辑要求
### 1. 内容整合策略
- **时间同步**将OCR字幕与Whisper口播按时间轴精确对齐
- **内容互补**识别字幕与口播的重复补充和差异部分
- **信息完整性**确保重要信息不遗漏避免重复冗余
### 2. 脚本结构设计
- **开场设计**基于前3秒内容设计引人入胜的开场
- **节奏控制**根据时间轴密度调整内容节奏
- **高潮设置**识别关键信息点设计内容高潮
- **结尾收束**基于最后内容设计有力结尾
### 3. 语言风格优化
- **口语化处理**将OCR识别文字转换为自然口语表达
- **情感表达**根据内容调整语调语速和情感色彩
- **文化适配**考虑目标受众调整表达方式
### 4. 视觉与音频协调
- **字幕时机**优化字幕出现时机与音频节奏配合
- **重点突出**识别关键信息在脚本中重点标注
- **转场设计**设计自然的内容转场和过渡
## 输出格式要求
请按以下格式输出脚本
### 完整脚本
```
[时间戳] [角色/场景] [内容]
```
### 脚本分析
- **内容概览**简要总结视频核心内容
- **关键信息点**列出3-5个最重要的信息
- **目标受众**分析适合的观众群体
- **传播建议**提供传播和推广建议
### 技术参数
- **总时长**基于时间轴计算
- **内容密度**评估信息密度是否合适
- **节奏分析**分析内容节奏变化
## 创作原则
1. **真实性**保持原始内容的真实性不添加虚构信息
2. **流畅性**确保脚本逻辑清晰表达流畅
3. **吸引力**增强内容的吸引力和传播性
4. **专业性**体现专业导演的编辑水平
请基于以上要求创作一个完整专业的视频脚本
"""
return prompt
def format_timeline_for_prompt(timeline_data, timeline_type):
"""
格式化时间轴数据用于提示词
Args:
timeline_data: 时间轴数据
timeline_type: 时间轴类型 ("OCR" "Whisper")
Returns:
str: 格式化的时间轴文本
"""
if timeline_type == "OCR":
formatted = "OCR字幕识别结果\n"
for entry in timeline_data:
timestamp = entry.get('timestamp', 0)
contents = entry.get('contents', [])
formatted += f"时间点 {timestamp:.2f}s:\n"
for content in contents:
text = content.get('text', '')
bbox = content.get('bbox', [])
formatted += f" - 文字: '{text}'\n"
if bbox:
formatted += f" 位置: {bbox}\n"
formatted += "\n"
elif timeline_type == "Whisper":
formatted = "Whisper语音识别结果\n"
for i, entry in enumerate(timeline_data):
start_time = entry.get('start', 0)
end_time = entry.get('end', 0)
text = entry.get('text', '')
formatted += f" id:{i}, start:{start_time:.2f}, end:{end_time:.2f}, text:{text}\n"
return formatted
def create_video_script_prompt(ocr_json_path, whisper_data=None):
"""
创建完整的视频脚本提示词
Args:
ocr_json_path: OCR JSON文件路径
whisper_data: Whisper识别数据可选
Returns:
str: 完整的导演编辑提示词
"""
# 读取OCR数据
from pre_data_1 import read_json_file, format_ocr_json
ocr_data = read_json_file(ocr_json_path)
if not ocr_data:
return "错误无法读取OCR数据文件"
# 格式化OCR时间轴
_, subtitle_array = format_ocr_json(ocr_data)
ocr_timeline = format_timeline_for_prompt(subtitle_array, "OCR")
# 格式化Whisper时间轴如果有
whisper_timeline = ""
if whisper_data:
whisper_timeline = format_timeline_for_prompt(whisper_data, "Whisper")
else:
whisper_timeline = "暂无Whisper数据"
# 视频基本信息
video_info = f"""
### 视频基本信息
- 文件路径: {ocr_json_path}
- OCR引擎: {ocr_data.get('ocr_engine', 'Unknown')}
- 视频时长: {ocr_data.get('duration', 0):.2f}
- 视频分辨率: {ocr_data.get('frame_width', 0)}x{ocr_data.get('frame_height', 0)}
- 视频帧率: {ocr_data.get('fps', 0):.2f}FPS
"""
# 生成导演提示词
prompt = generate_director_prompt(ocr_timeline, whisper_timeline, video_info)
return prompt
# 示例使用
if __name__ == "__main__":
# 示例Whisper数据实际使用时应该从文件读取
example_whisper_data = [
{"start": 0.00, "end": 1.80, "text": "潑水街不只有云南"},
{"start": 1.80, "end": 3.56, "text": "老窝更远更传统"},
{"start": 3.56, "end": 5.64, "text": "快来接触这份湿身快乐"},
# ... 更多数据
]
# 生成提示词
prompt = create_video_script_prompt(
"/root/autodl-tmp/new_cnocr/老挝泼水节_subtitles.json",
example_whisper_data
)
# 保存提示词到文件
import os
output_path = "/root/autodl-tmp/new_cnocr/director_prompt.txt"
with open(output_path, 'w', encoding='utf-8') as f:
f.write(prompt)
print(f"导演编辑提示词已保存到: {output_path}")
print("\n提示词预览前500字符:")
print(prompt[:500] + "...")

316
code/pre_data_1.py Normal file
View File

@ -0,0 +1,316 @@
import os
def read_json_file(json_path):
"""读取JSON文件内容"""
try:
import json
with open(json_path, 'r', encoding='utf-8') as file:
data = json.load(file)
print(f"成功读取JSON文件: {json_path}")
return data
except FileNotFoundError:
print(f"错误: 找不到文件 {json_path}")
return None
except json.JSONDecodeError as e:
print(f"JSON解析错误: {e}")
return None
except Exception as e:
print(f"读取JSON文件时出错: {e}")
return None
def calculate_text_similarity(text1, text2):
"""
计算两个文本的相似度使用Jaccard相似度
Args:
text1: 第一个文本
text2: 第二个文本
Returns:
float: 相似度值 (0-1之间)
"""
# 检查空文本
if not text1 or not text2:
return 0.0
# 清理文本,移除空白字符
text1 = text1.strip()
text2 = text2.strip()
if not text1 or not text2:
return 0.0
# 如果两个文本完全相同
if text1 == text2:
return 1.0
# 将文本转换为字符集合
chars1 = set(text1)
chars2 = set(text2)
# 计算Jaccard相似度
intersection = len(chars1.intersection(chars2))
union = len(chars1.union(chars2))
similarity = intersection / union if union > 0 else 0.0
return similarity
def calculate_iou(box1, box2):
"""
计算两个边界框的IoU (Intersection over Union)
Args:
box1: 第一个边界框 [x1, y1, x2, y2] [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
box2: 第二个边界框 [x1, y1, x2, y2] [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
Returns:
float: IoU值 (0-1之间)
"""
# 处理不同的输入格式
if len(box1) == 4 and isinstance(box1[0], (int, float)):
# 格式: [x1, y1, x2, y2]
x1_1, y1_1, x2_1, y2_1 = box1
elif len(box1) == 4 and isinstance(box1[0], list):
# 格式: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]] - 取最小和最大坐标
x_coords = [point[0] for point in box1]
y_coords = [point[1] for point in box1]
x1_1, x2_1 = min(x_coords), max(x_coords)
y1_1, y2_1 = min(y_coords), max(y_coords)
else:
raise ValueError("box1格式错误应为[x1,y1,x2,y2]或[[x1,y1],[x2,y2],[x3,y3],[x4,y4]]")
if len(box2) == 4 and isinstance(box2[0], (int, float)):
# 格式: [x1, y1, x2, y2]
x1_2, y1_2, x2_2, y2_2 = box2
elif len(box2) == 4 and isinstance(box2[0], list):
# 格式: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]] - 取最小和最大坐标
x_coords = [point[0] for point in box2]
y_coords = [point[1] for point in box2]
x1_2, x2_2 = min(x_coords), max(x_coords)
y1_2, y2_2 = min(y_coords), max(y_coords)
else:
raise ValueError("box2格式错误应为[x1,y1,x2,y2]或[[x1,y1],[x2,y2],[x3,y3],[x4,y4]]")
# 计算交集区域
x_left = max(x1_1, x1_2)
y_top = max(y1_1, y1_2)
x_right = min(x2_1, x2_2)
y_bottom = min(y2_1, y2_2)
# 检查是否有交集
if x_right < x_left or y_bottom < y_top:
return 0.0
# 计算交集面积
intersection_area = (x_right - x_left) * (y_bottom - y_top)
# 计算并集面积
box1_area = (x2_1 - x1_1) * (y2_1 - y1_1)
box2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
union_area = box1_area + box2_area - intersection_area
# 计算IoU
iou = intersection_area / union_area if union_area > 0 else 0.0
return iou
def format_ocr_json(ocr_data):
"""格式化OCR字幕转文字JSON数据"""
if not ocr_data:
return "", []
formatted_text = "【OCR字幕识别内容】\n"
# 如果是字幕提取器的格式
if isinstance(ocr_data, dict):
# 基本信息
if 'ocr_engine' in ocr_data:
formatted_text += f"OCR引擎: {ocr_data['ocr_engine']}\n"
if 'video_path' in ocr_data:
formatted_text += f"视频文件: {ocr_data['video_path']}\n"
if 'duration' in ocr_data:
formatted_text += f"视频时长: {ocr_data['duration']:.2f}\n"
if 'fps' in ocr_data:
formatted_text += f"视频帧率: {ocr_data['fps']:.2f}FPS\n"
if 'frame_width' in ocr_data and 'frame_height' in ocr_data:
formatted_text += f"视频分辨率: {ocr_data['frame_width']}x{ocr_data['frame_height']}\n"
# 字幕区域信息
if 'subtitle_position' in ocr_data:
formatted_text += f"字幕区域: {ocr_data['subtitle_position']}\n"
if 'subtitle_region' in ocr_data:
region = ocr_data['subtitle_region']
formatted_text += f"字幕区域坐标: {region}\n"
# 处理参数
if 'sample_interval' in ocr_data:
formatted_text += f"采样间隔: {ocr_data['sample_interval']}\n"
if 'confidence_threshold' in ocr_data:
formatted_text += f"置信度阈值: {ocr_data['confidence_threshold']}\n"
# 完整字幕文本
if 'continuous_text' in ocr_data:
formatted_text += f"\n📄 完整字幕文本:\n"
formatted_text += f"{ocr_data['continuous_text']}\n"
# 详细字幕时间轴 - 按三层嵌套数组结构组织
if 'subtitles' in ocr_data and len(ocr_data['subtitles']) > 0:
subtitles = ocr_data['subtitles']
# 按时间戳分组存储
timestamp_groups = {}
for subtitle in subtitles:
timestamp = subtitle.get('timestamp', 0)
text = subtitle.get('text', '')
confidence = subtitle.get('confidence', 0)
engine = subtitle.get('engine', 'Unknown')
bbox = subtitle.get('bbox', [])
if timestamp not in timestamp_groups:
timestamp_groups[timestamp] = []
# 第三层:内容和位置
subtitle_content = {
'text': text,
'bbox': bbox,
"timestamp": timestamp
}
timestamp_groups[timestamp].append(subtitle_content)
# 转换为三层嵌套数组结构
subtitle_array = []
sorted_timestamps = sorted(timestamp_groups.keys())
for timestamp in sorted_timestamps:
# 第一层:时间戳
timestamp_entry = {
'timestamp': timestamp,
'contents': timestamp_groups[timestamp] # 第二层:同一时间戳内的各个内容
}
subtitle_array.append(timestamp_entry)
# 显示三层嵌套数组结构
formatted_text += f"\n⏰ 详细字幕时间轴 (三层嵌套数组结构):\n"
# 只显示前10个时间戳避免过长
display_count = min(10, len(subtitle_array))
for i, timestamp_entry in enumerate(subtitle_array[:display_count], 1):
timestamp = timestamp_entry['timestamp']
contents = timestamp_entry['contents']
formatted_text += f" {i}. {timestamp:.2f}s:\n"
# 显示该时间戳下的所有字幕(第二层)
for j, content in enumerate(contents, 1):
text = content['text']
bbox = content['bbox']
formatted_text += f" {j}. [{timestamp:.2f}s|{confidence:.3f}]: {text}\n"
# 如果有位置信息显示bbox第三层
if bbox:
formatted_text += f" 位置: {bbox}\n"
formatted_text += "\n"
if len(subtitle_array) > display_count:
formatted_text += f" ... (还有{len(subtitle_array) - display_count}个时间戳)\n"
# 返回三层嵌套数组结构
return formatted_text, subtitle_array
return formatted_text, []
def merge_and_filter_subtitles(subtitle_array, iou_threshold=0.7, text_similarity_threshold=0.7):
"""
合并并过滤字幕内容去除重复和空内容返回格式化字符串和处理后的数组
"""
# 深拷贝,避免原地修改
import copy
subtitle_array = copy.deepcopy(subtitle_array)
formatted_text = []
for i in range(len(subtitle_array)):
for j in range(len(subtitle_array[i]["contents"])):
# 修复确保i+k不会超出数组范围
for k in range(1, len(subtitle_array) - i): # 从1开始避免自己和自己比较
if i + k >= len(subtitle_array): # 安全检查
break
for l in range(len(subtitle_array[i+k]["contents"])):
text = subtitle_array[i]["contents"][j]["text"]
bbox = subtitle_array[i]["contents"][j]["bbox"]
text_1 = subtitle_array[i+k]["contents"][l]["text"]
bbox_1 = subtitle_array[i+k]["contents"][l]["bbox"]
iou = calculate_iou(bbox, bbox_1)
text_similarity = calculate_text_similarity(text, text_1)
if iou > iou_threshold and text_similarity > text_similarity_threshold:
# 记录需要删除的索引
subtitle_array[i+k]["contents"][l]["text"] = ''
subtitle_array[i]["contents"][j]["timestamp"] += 1
# 删除text为空字符串的contents
for i in range(len(subtitle_array)):
subtitle_array[i]["contents"] = [content for content in subtitle_array[i]["contents"] if content["text"] != '']
# 删除contents为空的时间戳条目
subtitle_array = [entry for entry in subtitle_array if len(entry["contents"]) > 0]
#formatted_text.append("处理后的字幕数组:")
for i, timestamp_entry in enumerate(subtitle_array[:], 1):
formatted_text.append(f"\n开始时间 {timestamp_entry['timestamp']:.2f}s:")
#formatted_text.append(f" 包含 {len(timestamp_entry['contents'])} 个字幕内容")
for j, content in enumerate(timestamp_entry['contents'], 1):
formatted_text.append(f" {j}. 文本: '{content['text']}'")
if content['bbox']:
formatted_text.append(f" 位置: {content['bbox']}")
if 'timestamp' in content and content['timestamp']:
formatted_text.append(f" 结束时间: {content['timestamp']:.2f}s")
#formatted_text.append("\n完整数组结构:")
#formatted_text.append(str(subtitle_array))
return '\n'.join(formatted_text), subtitle_array
ocr_json_path = "/root/autodl-tmp/new_cnocr/哈尔滨_subtitles.json"
ocr_data = read_json_file(ocr_json_path)
pre_data , subtitle_array= format_ocr_json(ocr_data)
iou_threshold = 0.8
text_similarity_threshold = 0.8
a , b = merge_and_filter_subtitles(subtitle_array, iou_threshold, text_similarity_threshold)
#print("\n完整数组结构:")
print(a)
print(b)
# 保存输出结果到txt文件
output_dir = os.path.dirname(ocr_json_path)
output_filename = os.path.splitext(os.path.basename(ocr_json_path))[0] + "_processed.txt"
output_path = os.path.join(output_dir, output_filename)
try:
with open(output_path, 'w', encoding='utf-8') as f:
f.write(a)
print(f"\n处理结果已保存到: {output_path}")
except Exception as e:
print(f"保存文件时出错: {e}")
#验证 "/root/autodl-tmp/douyin_ocr/兰州_subtitles.json" 里面的重复的两个内容确实是bbox不重叠
# a = [[303, 243], [442, 243], [442, 303], [303, 303]]
# b = [[339, 231], [495, 241], [490, 304], [335, 294]]
# c = [[482, 273], [660, 276], [660, 303], [481, 300]]
# d = [[536, 268], [732, 273], [731, 300], [535, 295]]
# iou = calculate_iou(a,b) # 0.47
# d = calculate_iou(c,d) # 0.40

127
code/token_counter.py Normal file
View File

@ -0,0 +1,127 @@
import tiktoken
import os
import cv2
def count_tokens(text, model="gpt-4"):
"""统计文本的token数量"""
try:
encoding = tiktoken.encoding_for_model(model)
tokens = encoding.encode(text)
return len(tokens)
except Exception as e:
print(f"Token统计出错: {e}")
# 简单估算中文字符约1.5个token英文单词约1.3个token
chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff')
english_words = len([word for word in text.split() if word.isascii()])
estimated_tokens = int(chinese_chars * 1.5 + english_words * 1.3)
return estimated_tokens
def get_video_token_estimate(video_path):
"""估算视频的token数量基于文件大小和时长"""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return {'estimated_tokens': 0, 'duration': 0, 'frame_count': 0, 'fps': 0, 'file_size_mb': 0, 'frames_used': 0}
# 获取视频信息
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = frame_count / fps if fps > 0 else 0
# 获取文件大小
file_size = os.path.getsize(video_path)
cap.release()
# 基于GPT-4V的token估算规则
# 视频token = 基础token + 帧数 * 每帧token
base_tokens = 85 # 基础token
frames_per_second = min(fps, 1) # 每秒最多1帧
total_frames = min(frame_count, int(duration * frames_per_second))
tokens_per_frame = 170 # 每帧约170个token
estimated_tokens = base_tokens + total_frames * tokens_per_frame
return {
'estimated_tokens': int(estimated_tokens),
'duration': duration,
'frame_count': frame_count,
'fps': fps,
'file_size_mb': file_size / (1024 * 1024),
'frames_used': total_frames
}
except Exception as e:
print(f"视频token估算出错: {e}")
return {'estimated_tokens': 0, 'duration': 0, 'frame_count': 0, 'fps': 0, 'file_size_mb': 0, 'frames_used': 0}
def analyze_input_tokens(video_path, text_content="", prompt_text=""):
"""分析输入token统计"""
print("\n" + "="*50)
print("📊 Token统计信息:")
print("="*50)
# 统计视频token
video_token_info = get_video_token_estimate(video_path)
print(f"🎬 视频Token统计:")
print(f" 估算Token数量: {video_token_info['estimated_tokens']:,}")
print(f" 视频时长: {video_token_info['duration']:.2f}")
print(f" 总帧数: {video_token_info['frame_count']:,}")
print(f" 帧率: {video_token_info['fps']:.2f} fps")
print(f" 文件大小: {video_token_info['file_size_mb']:.2f} MB")
print(f" 使用帧数: {video_token_info['frames_used']:,}")
# 统计文本token
text_tokens = 0
if text_content.strip():
text_tokens = count_tokens(text_content)
print(f"\n📝 文本Token统计:")
print(f" 文本内容Token: {text_tokens:,}")
print(f" 文本字符数: {len(text_content):,}")
# 统计提示词token
prompt_tokens = 0
if prompt_text.strip():
prompt_tokens = count_tokens(prompt_text)
print(f" 提示词Token: {prompt_tokens:,}")
video_cost = 0.0015
text_cost = 0.0004
total_cost = (video_token_info['estimated_tokens']*video_cost + text_tokens*text_cost + prompt_tokens*text_cost)/1000
# 计算总输入token
total_input_tokens = (video_token_info['estimated_tokens'] + text_tokens + prompt_tokens)
print(f"\n📈 总输入Token统计:")
print(f" 视频Token: {video_token_info['estimated_tokens']:,}")
print(f" 文本Token: {text_tokens:,}")
print(f" 提示词Token: {prompt_tokens:,}")
print(f" 🔥 总输入Token: {total_input_tokens:,}")
print(f" 💰 总费用: {total_cost:.4f}")
print("="*50)
return {
'video_tokens': video_token_info['estimated_tokens'],
'text_tokens': text_tokens,
'prompt_tokens': prompt_tokens,
'total_input_tokens': total_input_tokens,
'video_info': video_token_info,
'total_cost': total_cost
}
if __name__ == "__main__":
# 测试token统计功能
test_video = "/root/autodl-tmp/new/哈尔滨.mp4"
test_text = "这是一个测试文本包含中英文内容。This is a test text with Chinese and English content."
test_prompt = "请分析这个视频的内容。"
result = analyze_input_tokens(test_video, test_text, test_prompt)
print(f"\n测试结果: {result}")
# video_token = result['video_tokens']
# video_cost = 0.0015
# prompt_token = result['prompt_tokens']
# text_token = result['text_tokens']
# text_cost = 0.0004
# total_cost = video_token*video_cost + prompt_token*text_cost + text_token*text_cost
# print(total_cost)