import cv2 import numpy as np import os import subprocess import shutil from datetime import timedelta import argparse from sklearn.metrics.pairwise import cosine_similarity from skimage.metrics import structural_similarity as ssim from scipy import stats from collections import deque import matplotlib.pyplot as plt # 设置固定的输入输出路径 INPUT_VIDEO_PATH = "/root/autodl-tmp/kuaishou_demo" OUTPUT_DIR = "/root/autodl-tmp/02_VideoSplitter/VideoSplitter_output" # 支持的视频格式 VIDEO_EXTENSIONS = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv'] # 增强参数设置 SAMPLE_RATE = 1 METHOD = "enhanced" # 新增enhanced方法 THRESHOLD = 0.5 VERBOSE = True # 新增参数 WINDOW_SIZE = 30 # 滑动窗口大小 GRADIENT_THRESHOLD = 0.02 # 渐变检测阈值 EDGE_DENSITY_THRESHOLD = 0.3 # 边缘密度变化阈值 COLOR_HIST_THRESHOLD = 0.4 # 颜色直方图变化阈值 # FFMPEG可能的路径 FFMPEG_PATHS = [ 'ffmpeg', '/usr/bin/ffmpeg', '/usr/local/bin/ffmpeg', 'C:\\ffmpeg\\bin\\ffmpeg.exe', ] def find_ffmpeg(): """查找系统中可用的ffmpeg路径""" try: if os.name == 'nt': result = subprocess.run(['where', 'ffmpeg'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) if result.returncode == 0: return result.stdout.strip().split('\n')[0] else: result = subprocess.run(['which', 'ffmpeg'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) if result.returncode == 0: return result.stdout.strip() except Exception: pass for path in FFMPEG_PATHS: if shutil.which(path): return path return None def extract_enhanced_features(frame): """ 提取增强特征用于场景检测 Args: frame: 输入帧 Returns: features: 特征字典 """ # 调整大小以加快处理 frame_resized = cv2.resize(frame, (320, 180)) # 1. 灰度图 gray = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2GRAY) # 2. 颜色直方图(HSV) hsv = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2HSV) hist_h = cv2.calcHist([hsv], [0], None, [50], [0, 180]) hist_s = cv2.calcHist([hsv], [1], None, [50], [0, 256]) hist_v = cv2.calcHist([hsv], [2], None, [50], [0, 256]) # 3. 边缘检测 edges = cv2.Canny(gray, 50, 150) edge_density = np.sum(edges > 0) / (edges.shape[0] * edges.shape[1]) # 4. 亮度均值和标准差 brightness_mean = np.mean(gray) brightness_std = np.std(gray) # 5. 纹理特征(局部二值模式的简化版本) sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) texture_energy = np.mean(np.sqrt(sobel_x**2 + sobel_y**2)) return { 'gray': gray, 'hist_h': hist_h.flatten(), 'hist_s': hist_s.flatten(), 'hist_v': hist_v.flatten(), 'edge_density': edge_density, 'brightness_mean': brightness_mean, 'brightness_std': brightness_std, 'texture_energy': texture_energy } def enhanced_frame_similarity(features1, features2): """ 增强的帧相似度计算 Args: features1, features2: 特征字典 Returns: similarity_scores: 各种相似度分数的字典 """ scores = {} # 1. SSIM相似度 scores['ssim'] = ssim(features1['gray'], features2['gray']) # 2. 颜色直方图相似度 scores['hist_h'] = cv2.compareHist(features1['hist_h'], features2['hist_h'], cv2.HISTCMP_CORREL) scores['hist_s'] = cv2.compareHist(features1['hist_s'], features2['hist_s'], cv2.HISTCMP_CORREL) scores['hist_v'] = cv2.compareHist(features1['hist_v'], features2['hist_v'], cv2.HISTCMP_CORREL) # 3. 边缘密度变化 edge_diff = abs(features1['edge_density'] - features2['edge_density']) scores['edge_stability'] = 1.0 - min(edge_diff / 0.5, 1.0) # 归一化 # 4. 亮度稳定性 brightness_diff = abs(features1['brightness_mean'] - features2['brightness_mean']) / 255.0 scores['brightness_stability'] = 1.0 - brightness_diff # 5. 纹理稳定性 texture_diff = abs(features1['texture_energy'] - features2['texture_energy']) scores['texture_stability'] = 1.0 - min(texture_diff / 100.0, 1.0) # 归一化 return scores def detect_transition_type(similarity_window, frame_indices): """ 检测转场类型 Args: similarity_window: 相似度时间序列窗口 frame_indices: 对应的帧索引 Returns: transition_info: 转场信息字典 """ if len(similarity_window) < 5: return {'type': 'unknown', 'confidence': 0.0} # 计算相似度变化趋势 x = np.arange(len(similarity_window)) slope, intercept, r_value, p_value, std_err = stats.linregress(x, similarity_window) # 计算变化率 diff = np.diff(similarity_window) max_drop = np.min(diff) if len(diff) > 0 else 0 total_change = similarity_window[-1] - similarity_window[0] transition_info = { 'slope': slope, 'r_squared': r_value**2, 'max_drop': max_drop, 'total_change': total_change, 'std': np.std(similarity_window) } # 分类转场类型 if r_value**2 > 0.7 and slope < -0.02: # 线性下降,可能是渐变 if abs(max_drop) < 0.1: transition_info.update({'type': 'fade', 'confidence': 0.8}) else: transition_info.update({'type': 'dissolve', 'confidence': 0.7}) elif abs(max_drop) > 0.3: # 突然下降,硬切 transition_info.update({'type': 'cut', 'confidence': 0.9}) elif np.std(similarity_window) > 0.1 and total_change < -0.2: # 不规则变化,可能是复杂转场 transition_info.update({'type': 'complex', 'confidence': 0.6}) else: transition_info.update({'type': 'stable', 'confidence': 0.5}) return transition_info def enhanced_scene_detection(frames_info, method='enhanced', threshold=0.5): """ 增强的场景变化检测 Args: frames_info: 帧信息列表 method: 检测方法 threshold: 基础阈值 Returns: scenes: 场景信息列表,包含转场类型 """ if len(frames_info) < WINDOW_SIZE: return [] print("正在提取增强特征...") features_list = [] # 提取所有帧的特征 for i, (frame_num, timestamp, frame_path) in enumerate(frames_info): frame = cv2.imread(frame_path) features = extract_enhanced_features(frame) features_list.append(features) if i % 50 == 0: print(f"特征提取进度: {i+1}/{len(frames_info)}") print("正在进行增强场景检测...") # 滑动窗口分析 scenes = [] scene_start = frames_info[0] similarity_window = deque(maxlen=WINDOW_SIZE) composite_scores = [] for i in range(1, len(frames_info)): # 计算多维相似度 sim_scores = enhanced_frame_similarity(features_list[i-1], features_list[i]) # 计算复合相似度分数 composite_score = ( sim_scores['ssim'] * 0.3 + (sim_scores['hist_h'] + sim_scores['hist_s'] + sim_scores['hist_v']) / 3 * 0.25 + sim_scores['edge_stability'] * 0.15 + sim_scores['brightness_stability'] * 0.15 + sim_scores['texture_stability'] * 0.15 ) composite_scores.append(composite_score) similarity_window.append(composite_score) # 自适应阈值 if len(composite_scores) > 50: recent_scores = composite_scores[-50:] adaptive_threshold = np.mean(recent_scores) - 2 * np.std(recent_scores) adaptive_threshold = max(adaptive_threshold, threshold * 0.5) # 设置下限 else: adaptive_threshold = threshold # 检测场景变化 if composite_score < adaptive_threshold and len(similarity_window) >= 10: # 分析转场类型 transition_info = detect_transition_type( list(similarity_window)[-10:], list(range(i-9, i+1)) ) scene_end = frames_info[i-1] scene_duration = scene_end[1] - scene_start[1] # 根据转场类型调整最小时长要求 min_duration = 1.0 if transition_info['type'] == 'cut' else 2.0 if scene_duration >= min_duration: scenes.append({ 'start_frame': scene_start[0], 'end_frame': scene_end[0], 'start_time': scene_start[1], 'end_time': scene_end[1], 'duration': scene_duration, 'transition_type': transition_info['type'], 'transition_confidence': transition_info['confidence'], 'similarity_score': composite_score, 'adaptive_threshold': adaptive_threshold }) if VERBOSE: print(f"检测到{transition_info['type']}转场: 帧 {scene_end[0]}, " f"时间 {timedelta(seconds=scene_end[1])}, " f"相似度: {composite_score:.4f}, " f"置信度: {transition_info['confidence']:.2f}") scene_start = frames_info[i] similarity_window.clear() # 清空窗口重新开始 # 添加最后一个场景 if len(frames_info) > 0: scene_end = frames_info[-1] scene_duration = scene_end[1] - scene_start[1] if scene_duration >= 1.0: scenes.append({ 'start_frame': scene_start[0], 'end_frame': scene_end[0], 'start_time': scene_start[1], 'end_time': scene_end[1], 'duration': scene_duration, 'transition_type': 'end', 'transition_confidence': 1.0, 'similarity_score': 1.0, 'adaptive_threshold': threshold }) # 统计转场类型 transition_types = {} for scene in scenes: t_type = scene['transition_type'] transition_types[t_type] = transition_types.get(t_type, 0) + 1 print(f"\n增强场景检测统计:") print(f"检测到 {len(scenes)} 个场景, 平均时长: {sum(s['duration'] for s in scenes)/max(1, len(scenes)):.2f}秒") print("转场类型分析:") for t_type, count in transition_types.items(): print(f" {t_type}: {count} 个") return scenes def extract_frames(video_path, output_dir, sample_rate=1): """保持原有的帧提取功能""" if not os.path.exists(output_dir): os.makedirs(output_dir) cap = cv2.VideoCapture(video_path) fps = cap.get(cv2.CAP_PROP_FPS) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) duration = frame_count / fps print(f"视频信息:{frame_count}帧, {fps}fps, 时长:{timedelta(seconds=duration)}") frames_info = [] frame_number = 0 saved_count = 0 while True: ret, frame = cap.read() if not ret: break if frame_number % sample_rate == 0: timestamp = frame_number / fps frame_path = os.path.join(output_dir, f"frame_{saved_count:05d}.jpg") cv2.imwrite(frame_path, frame) frames_info.append((frame_number, timestamp, frame_path)) saved_count += 1 frame_number += 1 if frame_number % 100 == 0: print(f"处理进度: {frame_number}/{frame_count} ({frame_number/frame_count*100:.2f}%)") cap.release() print(f"共提取了 {saved_count} 帧") # 转场类型统计 transition_stats = {} duration_by_type = {} for clip in frames_info: t_type = clip['transition_type'] transition_stats[t_type] = transition_stats.get(t_type, 0) + 1 if t_type not in duration_by_type: duration_by_type[t_type] = [] duration_by_type[t_type].append(clip['duration']) # 生成报告文件 report_file = os.path.join(output_dir, 'enhanced_analysis_report.txt') with open(report_file, 'w', encoding='utf-8') as f: f.write("增强视频切割分析报告\n") f.write("=" * 50 + "\n\n") f.write(f"\n详细片段信息:\n") for clip in frames_info: f.write(f"\"textIdx\":{clip['index']+1},\n") f.write(f"\"time_start\":{clip["start"]},\n") f.write(f"\"time_end\":{clip["end"]},\n") f.write(f" 时长: {clip['duration']:.2f}秒\n") print(f"已生成增强分析报告: {report_file}") return frames_info def extract_video_clips_enhanced(video_path, scenes, output_dir, ffmpeg_path=None): """ 增强的视频片段提取,包含转场信息 """ if not os.path.exists(output_dir): os.makedirs(output_dir) if ffmpeg_path is None: ffmpeg_path = find_ffmpeg() if ffmpeg_path is None: print("错误: 找不到ffmpeg。") return [] print(f"\n开始切割视频: {video_path}") print(f"输出目录: {output_dir}") print("-" * 60) clips_info = [] for i, scene in enumerate(scenes): start_time = scene['start_time'] end_time = scene['end_time'] duration = scene['duration'] transition_type = scene['transition_type'] try: print(f"\n切割片段 {i+1}/{len(scenes)} ({transition_type}):") print(f" 开始时间: {timedelta(seconds=start_time)}") print(f" 结束时间: {timedelta(seconds=end_time)}") print(f" 时长: {duration:.2f}秒") print(f" 转场类型: {transition_type} (置信度: {scene['transition_confidence']:.2f})") clips_info.append({ 'index': i, 'file': output_file, 'start': start_time, 'end': end_time, 'duration': duration, 'transition_type': transition_type, 'confidence': scene['transition_confidence'] }) except Exception as e: print(f" ✗ 切割失败: {str(e)}") return clips_info def generate_analysis_report(clips_info, output_dir): """ 生成分析报告和可视化 """ if not clips_info: return # 转场类型统计 transition_stats = {} duration_by_type = {} for clip in clips_info: t_type = clip['transition_type'] transition_stats[t_type] = transition_stats.get(t_type, 0) + 1 if t_type not in duration_by_type: duration_by_type[t_type] = [] duration_by_type[t_type].append(clip['duration']) # 生成报告文件 report_file = os.path.join(output_dir, 'enhanced_analysis_report.txt') with open(report_file, 'w', encoding='utf-8') as f: f.write("增强视频切割分析报告\n") f.write("=" * 50 + "\n\n") f.write(f"\n详细片段信息:\n") for clip in clips_info: f.write(f"\"textIdx\":{clip['index']+1},\n") f.write(f"\"time_start\":{clip["start"]},\n") f.write(f"\"time_end\":{clip["end"]},\n") f.write(f" 时长: {clip['duration']:.2f}秒\n") print(f"已生成增强分析报告: {report_file}") def process_video_enhanced(video_path, output_base_dir, sample_rate, method, threshold, ffmpeg_path): """ 增强的视频处理函数 """ video_filename = os.path.splitext(os.path.basename(video_path))[0] video_output_dir = os.path.join(output_base_dir, video_filename) if not os.path.exists(video_output_dir): os.makedirs(video_output_dir) frames_dir = os.path.join(video_output_dir, 'frames') clips_dir = os.path.join(video_output_dir, 'clips') for dir_path in [frames_dir, clips_dir]: if not os.path.exists(dir_path): os.makedirs(dir_path) print("\n增强处理参数:") print(f"输入视频: {os.path.abspath(video_path)}") print(f"输出目录: {os.path.abspath(video_output_dir)}") print(f"检测方法: {method} (增强版)") print(f"滑动窗口大小: {WINDOW_SIZE}") print("-" * 60) try: # 步骤1: 提取帧 print("\n步骤1: 正在提取视频帧...") frames_info = extract_frames(video_path, frames_dir, sample_rate) # 步骤2: 增强场景检测 print("\n步骤2: 正在进行增强场景检测...") scenes = enhanced_scene_detection(frames_info, method, threshold) if not scenes: print("未检测到场景变化") return False print("\n增强处理完成!") return True def get_video_files(directory): """获取目录中所有视频文件""" video_files = [] if os.path.isfile(directory): ext = os.path.splitext(directory)[1].lower() if ext in VIDEO_EXTENSIONS: return [directory] for root, _, files in os.walk(directory): for file in files: ext = os.path.splitext(file)[1].lower() if ext in VIDEO_EXTENSIONS: video_files.append(os.path.join(root, file)) return video_files def get_parent_folder_name(path): """获取路径中'video'上一级文件夹的名字""" abs_path = os.path.abspath(path) if os.path.isdir(abs_path): parent = os.path.dirname(abs_path.rstrip('/')) folder_name = os.path.basename(parent) else: parent = os.path.dirname(os.path.dirname(abs_path)) folder_name = os.path.basename(parent) return folder_name def main(): """主函数 - 增强版""" print("=" * 60) print("智能视频切割工具 - 增强版 (支持复杂转场检测)") print("=" * 60) ffmpeg_path = find_ffmpeg() if ffmpeg_path: print(f"已找到ffmpeg: {ffmpeg_path}") else: print("警告: 未找到ffmpeg,视频切割功能将不可用") video_files = get_video_files(INPUT_VIDEO_PATH) if not video_files: print(f"错误: 在 '{INPUT_VIDEO_PATH}' 中没有找到视频文件") return parent_folder_name = get_parent_folder_name(INPUT_VIDEO_PATH) output_dir = os.path.join(OUTPUT_DIR, f"{parent_folder_name}_enhanced") if not os.path.exists(output_dir): os.makedirs(output_dir) print(f"\n增强版输出目录: {output_dir}") successful = 0 failed = 0 for i, video_path in enumerate(video_files): print("\n" + "=" * 60) print(f"正在处理视频 [{i+1}/{len(video_files)}]: {os.path.basename(video_path)}") print("=" * 60) success = process_video_enhanced( video_path=video_path, output_base_dir=output_dir, sample_rate=SAMPLE_RATE, method=METHOD, threshold=THRESHOLD, ffmpeg_path=ffmpeg_path ) if success: successful += 1 else: failed += 1 print("\n" + "=" * 60) print("增强版批量处理完成!") print("=" * 60) print(f"总共处理: {len(video_files)} 个视频文件") print(f"成功: {successful} 个") print(f"失败: {failed} 个") print(f"输出目录: {os.path.abspath(output_dir)}") if __name__ == "__main__": main()