TravelContentCreator/domain/aigc/engines/topic_generate_v2.py

326 lines
11 KiB
Python
Raw Normal View History

2025-12-08 14:58:35 +08:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
选题生成引擎 V2
- 不访问数据库接收完整数据
- 使用 PromptRegistry 管理 prompt
- 统一依赖注入
"""
import logging
from typing import Dict, Any, Optional, List
from .base import BaseAIGCEngine, EngineResult
logger = logging.getLogger(__name__)
class TopicGenerateEngineV2(BaseAIGCEngine):
"""
选题生成引擎 V2
改进:
1. 不访问数据库所有数据由调用方传入
2. 使用 PromptRegistry 管理 prompt
3. 接收完整对象而非 ID
"""
engine_id = "topic_generate"
engine_name = "选题生成"
2025-12-08 14:58:35 +08:00
version = "2.0.0"
description = "根据景区、产品、风格等信息生成营销选题"
2025-12-08 14:58:35 +08:00
def __init__(self):
super().__init__()
self._prompt_registry = None
def get_param_schema(self) -> Dict[str, Any]:
"""
定义参数结构
V2.2: 合并 scenic_spot product subject
2025-12-08 14:58:35 +08:00
"""
return {
# 基础参数
"num_topics": {
"type": "int",
"required": False,
"default": 5,
"desc": "生成选题数量",
},
"month": {
"type": "str",
"required": True,
"desc": "目标日期/月份 (如 '2024-12''12月5日')",
},
# 主体信息 (景区+产品合并)
"subject": {
"type": "object",
"required": False,
"desc": "主体信息 {id, name, type, description, location, products: [...]}",
},
# 兼容旧字段
2025-12-08 14:58:35 +08:00
"scenic_spot": {
"type": "object",
"required": False,
"desc": "[兼容] 景区信息,建议使用 subject",
2025-12-08 14:58:35 +08:00
},
"product": {
"type": "object",
"required": False,
"desc": "[兼容] 产品信息,建议使用 subject.products",
2025-12-08 14:58:35 +08:00
},
2025-12-08 14:58:35 +08:00
"style": {
"type": "object",
"required": False,
"desc": "风格信息对象 {id, name}",
2025-12-08 14:58:35 +08:00
},
"audience": {
"type": "object",
"required": False,
"desc": "受众信息对象 {id, name}",
},
# 热点信息
"hot_topics": {
"type": "object",
"required": False,
"desc": "热点信息 {events: [], festivals: [], trending: []}",
2025-12-08 14:58:35 +08:00
},
# 可选: 多选列表
"styles_list": {
"type": "list",
"required": False,
"desc": "可选风格列表 [{id, name}, ...]",
},
"audiences_list": {
"type": "list",
"required": False,
"desc": "可选受众列表 [{id, name}, ...]",
},
# Prompt 版本控制
"prompt_version": {
"type": "str",
"required": False,
"default": "latest",
"desc": "使用的 prompt 版本",
},
}
def estimate_duration(self, params: Dict[str, Any]) -> int:
"""预估执行时间"""
num_topics = params.get('num_topics', 5)
return 15 + num_topics * 2
async def execute(self, params: Dict[str, Any], task_id: str = None) -> EngineResult:
"""
执行选题生成
Args:
params: 包含完整对象的参数
task_id: 任务 ID
"""
try:
self.log(f"开始生成选题 (V2)")
self.set_progress(task_id, 10)
# 提取参数
num_topics = params.get('num_topics', 5)
month = params.get('month', '')
# 主体信息 (支持新旧两种格式)
subject = params.get('subject')
2025-12-08 14:58:35 +08:00
scenic_spot = params.get('scenic_spot')
product = params.get('product')
# 兼容处理: 如果没有 subject从 scenic_spot + product 构建
if not subject and scenic_spot:
subject = {
**scenic_spot,
'type': scenic_spot.get('type', 'scenic_spot'),
'products': [product] if product else []
}
2025-12-08 14:58:35 +08:00
style = params.get('style')
audience = params.get('audience')
hot_topics = params.get('hot_topics')
2025-12-08 14:58:35 +08:00
styles_list = params.get('styles_list', [])
audiences_list = params.get('audiences_list', [])
prompt_version = params.get('prompt_version', 'latest')
self.set_progress(task_id, 20)
# 获取 PromptRegistry
prompt_registry = self._get_prompt_registry()
# 🎯 方案A: 检查是否有 Java 透传的 prompt_context
prompt_context = params.get('prompt_context')
if prompt_context:
self.log("使用 Java 透传的 prompt_context")
context = prompt_context
# 补充必要字段
if 'num_topics' not in context:
context['num_topics'] = num_topics
if 'month' not in context:
context['month'] = month
if 'hot_topics' not in context and hot_topics:
context['hot_topics'] = hot_topics
else:
self.log("使用本地构建的 context (兼容模式)")
# 构建 prompt 上下文
context = {
'num_topics': num_topics,
'month': month,
'subject': subject,
# 兼容旧 prompt 模板
'scenic_spot': subject,
'product': subject.get('products', [{}])[0] if subject and subject.get('products') else product,
'style': style,
'audience': audience,
'hot_topics': hot_topics,
'styles_list': self._format_list(styles_list),
'audiences_list': self._format_list(audiences_list),
}
2025-12-08 14:58:35 +08:00
# 渲染 prompt
system_prompt, user_prompt = prompt_registry.render(
'topic_generate',
context=context,
version=prompt_version
)
self.set_progress(task_id, 30)
# 获取模型参数
prompt_config = prompt_registry.get('topic_generate', prompt_version)
model_params = prompt_config.get_model_params()
# 调用 LLM
self.log("调用 LLM 生成选题...")
raw_result, input_tokens, output_tokens, time_cost = await self.llm.generate(
system_prompt=system_prompt,
user_prompt=user_prompt,
**model_params
)
self.set_progress(task_id, 70)
# 解析结果
topics = self._parse_topics(raw_result)
if not topics:
return EngineResult(
success=False,
error="选题生成失败,无法解析结果",
error_code="PARSE_ERROR"
)
self.set_progress(task_id, 90)
# 增强选题信息 (添加原始对象引用)
enhanced_topics = self._enhance_topics(
topics, subject, style, audience
2025-12-08 14:58:35 +08:00
)
self.set_progress(task_id, 100)
return EngineResult(
success=True,
data={
"topics": enhanced_topics,
"count": len(enhanced_topics),
},
metadata={
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"time_cost": time_cost,
"prompt_version": prompt_version,
}
)
except Exception as e:
self.log(f"选题生成异常: {e}", level='error')
return EngineResult(
success=False,
error=str(e),
error_code="EXECUTION_ERROR"
)
def _get_prompt_registry(self):
"""获取 PromptRegistry"""
if self._prompt_registry:
return self._prompt_registry
from domain.prompt import PromptRegistry
self._prompt_registry = PromptRegistry('prompts')
return self._prompt_registry
def _format_list(self, items: List[Dict]) -> str:
"""格式化列表为字符串"""
if not items:
return ""
lines = []
for item in items:
name = item.get('name', '')
desc = item.get('description', '')
if name:
lines.append(f"- {name}: {desc}" if desc else f"- {name}")
return "\n".join(lines)
def _parse_topics(self, raw_result: str) -> List[Dict[str, Any]]:
"""解析 LLM 返回的选题"""
import json
import re
# 尝试提取 JSON
json_match = re.search(r'\[[\s\S]*\]', raw_result)
if json_match:
try:
return json.loads(json_match.group())
except json.JSONDecodeError:
pass
# 尝试 json_repair
try:
import json_repair
return json_repair.loads(raw_result)
except:
pass
self.log("无法解析选题结果", level='error')
return []
def _enhance_topics(self, topics: List[Dict],
subject: Optional[Dict],
2025-12-08 14:58:35 +08:00
style: Optional[Dict],
audience: Optional[Dict]) -> List[Dict]:
"""增强选题信息"""
enhanced = []
for topic in topics:
enhanced_topic = dict(topic)
# 添加原始对象 ID 引用
if subject:
enhanced_topic['subject_id'] = subject.get('id')
# 从 products 中提取第一个产品的 ID (如果有)
products = subject.get('products', [])
if products and len(products) > 0:
enhanced_topic['product_id'] = products[0].get('id')
2025-12-08 14:58:35 +08:00
if style:
enhanced_topic['style_id'] = style.get('id')
if audience:
enhanced_topic['audience_id'] = audience.get('id')
enhanced.append(enhanced_topic)
return enhanced