TravelContentCreator/api/services/prompt_builder.py

191 lines
6.7 KiB
Python
Raw Normal View History

2025-07-11 13:50:08 +08:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
提示词构建服务
负责根据选题信息构建完整的提示词
"""
import logging
from typing import Dict, Any, Optional, Tuple
from pathlib import Path
from core.config import ConfigManager, GenerateContentConfig
from utils.prompts import PromptTemplate
from api.services.prompt_service import PromptService
logger = logging.getLogger(__name__)
class PromptBuilderService:
"""提示词构建服务类"""
def __init__(self, config_manager: ConfigManager, prompt_service: PromptService):
"""
初始化提示词构建服务
Args:
config_manager: 配置管理器
prompt_service: 提示词服务
"""
self.config_manager = config_manager
self.prompt_service = prompt_service
self.content_config: GenerateContentConfig = config_manager.get_config('content_gen', GenerateContentConfig)
def build_content_prompt(self, topic: Dict[str, Any], step: str = "content") -> Tuple[str, str]:
"""
构建内容生成提示词
Args:
topic: 选题信息
step: 当前步骤用于过滤参考内容
Returns:
系统提示词和用户提示词的元组
"""
# 加载系统提示词和用户提示词模板
system_prompt_path = self.content_config.content_system_prompt
user_prompt_path = self.content_config.content_user_prompt
# 创建提示词模板
template = PromptTemplate(system_prompt_path, user_prompt_path)
# 获取风格内容
style_filename = topic.get("style", "")
style_content = self.prompt_service.get_style_content(style_filename)
# 获取目标受众内容
demand_filename = topic.get("target_audience", "")
demand_content = self.prompt_service.get_audience_content(demand_filename)
# 获取景区信息
object_name = topic.get("object", "")
object_content = self.prompt_service.get_scenic_spot_info(object_name)
# 获取产品信息
product_name = topic.get("product", "")
product_content = self.prompt_service.get_product_info(product_name)
# 获取参考内容
refer_content = self.prompt_service.get_refer_content(step)
# 构建系统提示词
system_prompt = template.get_system_prompt()
# 构建用户提示词
user_prompt = template.build_user_prompt(
style_content=f"{style_filename}\n{style_content}",
demand_content=f"{demand_filename}\n{demand_content}",
object_content=f"{object_name}\n{object_content}",
product_content=f"{product_name}\n{product_content}",
refer_content=refer_content
)
return system_prompt, user_prompt
def build_topic_prompt(self, num_topics: int, month: str) -> Tuple[str, str]:
"""
构建选题生成提示词
Args:
num_topics: 要生成的选题数量
month: 月份
Returns:
系统提示词和用户提示词的元组
"""
# 从配置中获取选题提示词模板路径
topic_config = self.config_manager.get_config('topic_gen', dict)
if not topic_config:
raise ValueError("未找到选题生成配置")
system_prompt_path = topic_config.get("topic_system_prompt", "")
user_prompt_path = topic_config.get("topic_user_prompt", "")
if not system_prompt_path or not user_prompt_path:
raise ValueError("选题提示词模板路径不完整")
# 创建提示词模板
template = PromptTemplate(system_prompt_path, user_prompt_path)
# 获取风格列表
styles = self.prompt_service.get_all_styles()
style_content = "Style文件列表:\n" + "\n".join([f"- {style['name']}" for style in styles])
# 获取目标受众列表
audiences = self.prompt_service.get_all_audiences()
demand_content = "Demand文件列表:\n" + "\n".join([f"- {audience['name']}" for audience in audiences])
# 获取参考内容
refer_content = self.prompt_service.get_refer_content("topic")
# 获取景区信息列表
spots = self.prompt_service.get_all_scenic_spots()
object_content = "Object信息:\n" + "\n".join([f"- {spot['name']}" for spot in spots])
# 构建系统提示词
system_prompt = template.get_system_prompt()
# 构建创作资料
creative_materials = (
f"你拥有的创作资料如下:\n"
f"{style_content}\n\n"
f"{demand_content}\n\n"
f"{refer_content}\n\n"
f"{object_content}"
)
# 构建用户提示词
user_prompt = template.build_user_prompt(
creative_materials=creative_materials,
num_topics=num_topics,
month=month
)
return system_prompt, user_prompt
def build_judge_prompt(self, topic: Dict[str, Any], content: Dict[str, Any]) -> Tuple[str, str]:
"""
构建内容审核提示词
Args:
topic: 选题信息
content: 生成的内容
Returns:
系统提示词和用户提示词的元组
"""
# 从配置中获取审核提示词模板路径
system_prompt_path = self.content_config.judger_system_prompt
user_prompt_path = self.content_config.judger_user_prompt
# 创建提示词模板
template = PromptTemplate(system_prompt_path, user_prompt_path)
# 获取景区信息
object_name = topic.get("object", "")
object_content = self.prompt_service.get_scenic_spot_info(object_name)
# 获取产品信息
product_name = topic.get("product", "")
product_content = self.prompt_service.get_product_info(product_name)
# 获取参考内容
refer_content = self.prompt_service.get_refer_content("judge")
# 构建系统提示词
system_prompt = template.get_system_prompt()
# 格式化内容
import json
tweet_content = json.dumps(content, ensure_ascii=False, indent=4)
# 构建用户提示词
user_prompt = template.build_user_prompt(
tweet_content=tweet_content,
object_content=object_content,
product_content=product_content,
refer_content=refer_content
)
return system_prompt, user_prompt