2025-04-26 14:53:54 +08:00
|
|
|
|
import os
|
|
|
|
|
|
import random
|
|
|
|
|
|
import logging
|
|
|
|
|
|
import json
|
|
|
|
|
|
from PIL import Image
|
|
|
|
|
|
import traceback
|
|
|
|
|
|
from typing import List, Tuple, Dict, Any, Optional
|
2025-05-06 15:03:03 +08:00
|
|
|
|
import concurrent.futures
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
from PIL import ImageEnhance, ImageFilter
|
2025-04-26 14:53:54 +08:00
|
|
|
|
from .output_handler import OutputHandler
|
2025-05-06 15:19:37 +08:00
|
|
|
|
import io
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 尝试导入 scipy,如果失败则标记
|
|
|
|
|
|
try:
|
|
|
|
|
|
from scipy.fftpack import dct, idct
|
|
|
|
|
|
SCIPY_AVAILABLE = True
|
|
|
|
|
|
except ImportError:
|
|
|
|
|
|
SCIPY_AVAILABLE = False
|
|
|
|
|
|
dct = None
|
|
|
|
|
|
idct = None
|
|
|
|
|
|
|
2025-04-26 14:53:54 +08:00
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class PosterNotesCreator:
|
|
|
|
|
|
"""
|
|
|
|
|
|
处理原始海报作为主图,并随机选择额外的图片作为笔记图片。
|
|
|
|
|
|
确保选择的笔记图片与海报中使用的图片不重复。
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, output_handler: OutputHandler):
|
|
|
|
|
|
"""
|
|
|
|
|
|
初始化 PosterNotesCreator
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
output_handler: 可选的 OutputHandler 实例,用于处理输出
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.output_handler = output_handler
|
|
|
|
|
|
logging.info("PosterNotesCreator 初始化完成")
|
|
|
|
|
|
|
|
|
|
|
|
def create_notes_images(
|
|
|
|
|
|
self,
|
|
|
|
|
|
run_id: str,
|
|
|
|
|
|
topic_index: int,
|
|
|
|
|
|
variant_index: int,
|
|
|
|
|
|
poster_image_path: str,
|
|
|
|
|
|
poster_metadata_path: str,
|
|
|
|
|
|
source_image_dir: str,
|
|
|
|
|
|
num_additional_images: int,
|
|
|
|
|
|
output_filename_template: str = "note_{index}.jpg"
|
|
|
|
|
|
) -> List[str]:
|
|
|
|
|
|
"""
|
|
|
|
|
|
创建笔记图像
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
run_id: 运行ID
|
|
|
|
|
|
topic_index: 主题索引
|
|
|
|
|
|
variant_index: 变体索引
|
|
|
|
|
|
poster_image_path: 海报图像路径
|
|
|
|
|
|
poster_metadata_path: 海报元数据路径
|
|
|
|
|
|
source_image_dir: 源图像目录
|
|
|
|
|
|
num_additional_images: 要使用的额外图像数量
|
|
|
|
|
|
output_filename_template: 输出文件名模板
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
List[str]: 保存的笔记图像路径列表
|
|
|
|
|
|
"""
|
|
|
|
|
|
# 检查输入路径是否存在
|
|
|
|
|
|
if not os.path.exists(poster_image_path):
|
|
|
|
|
|
logger.error(f"海报图像不存在: {poster_image_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.exists(poster_metadata_path):
|
|
|
|
|
|
logger.error(f"海报元数据不存在: {poster_metadata_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.exists(source_image_dir) or not os.path.isdir(source_image_dir):
|
|
|
|
|
|
logger.error(f"源图像目录不存在: {source_image_dir}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 从元数据文件中读取已使用的图像信息
|
|
|
|
|
|
try:
|
|
|
|
|
|
with open(poster_metadata_path, 'r', encoding='utf-8') as f:
|
|
|
|
|
|
poster_metadata = json.load(f)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"无法读取海报元数据: {e}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 获取已经在海报中使用的图像
|
|
|
|
|
|
used_images = []
|
|
|
|
|
|
if 'collage_images' in poster_metadata:
|
|
|
|
|
|
used_images = poster_metadata['collage_images']
|
|
|
|
|
|
logger.info(f"海报中已使用 {len(used_images)} 张图像: {', '.join(used_images)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 列出源目录中的所有图像文件
|
|
|
|
|
|
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp')
|
|
|
|
|
|
available_images = [
|
|
|
|
|
|
f for f in os.listdir(source_image_dir)
|
|
|
|
|
|
if os.path.isfile(os.path.join(source_image_dir, f)) and
|
|
|
|
|
|
f.lower().endswith(image_extensions)
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
if not available_images:
|
|
|
|
|
|
logger.error(f"源目录中没有找到图像: {source_image_dir}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"源目录中找到 {len(available_images)} 张图像")
|
|
|
|
|
|
|
|
|
|
|
|
# 过滤掉已经在海报中使用的图像
|
|
|
|
|
|
available_images = [img for img in available_images if img not in used_images]
|
|
|
|
|
|
|
|
|
|
|
|
if not available_images:
|
|
|
|
|
|
logger.warning("所有图像都已在海报中使用,无法创建额外笔记")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"过滤后可用图像数量: {len(available_images)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 如果可用图像少于请求数量,进行警告但继续处理
|
|
|
|
|
|
if len(available_images) < num_additional_images:
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"可用图像数量 ({len(available_images)}) 少于请求的笔记数量 ({num_additional_images}),"
|
|
|
|
|
|
f"将使用所有可用图像"
|
|
|
|
|
|
)
|
|
|
|
|
|
selected_images = available_images
|
|
|
|
|
|
else:
|
|
|
|
|
|
# 随机选择额外图像
|
|
|
|
|
|
selected_images = random.sample(available_images, num_additional_images)
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"已选择 {len(selected_images)} 张图像作为笔记")
|
|
|
|
|
|
|
|
|
|
|
|
# 保存选择的笔记图像
|
|
|
|
|
|
saved_paths = []
|
|
|
|
|
|
for i, image_filename in enumerate(selected_images):
|
|
|
|
|
|
try:
|
|
|
|
|
|
# 加载图像
|
|
|
|
|
|
image_path = os.path.join(source_image_dir, image_filename)
|
|
|
|
|
|
image = Image.open(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
# 生成输出文件名
|
|
|
|
|
|
output_filename = output_filename_template.format(index=i+1)
|
|
|
|
|
|
|
|
|
|
|
|
# 创建元数据
|
|
|
|
|
|
note_metadata = {
|
|
|
|
|
|
"original_image": image_filename,
|
|
|
|
|
|
"note_index": i + 1,
|
|
|
|
|
|
"source_dir": source_image_dir,
|
|
|
|
|
|
"associated_poster": os.path.basename(poster_image_path)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# 使用输出处理器保存图像
|
|
|
|
|
|
saved_path = self.output_handler.handle_generated_image(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
'note', # 图像类型为note
|
|
|
|
|
|
image,
|
|
|
|
|
|
output_filename,
|
|
|
|
|
|
note_metadata
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
saved_paths.append(saved_path)
|
|
|
|
|
|
logger.info(f"已保存笔记图像 {i+1}/{len(selected_images)}: {saved_path}")
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"处理图像时出错 '{image_filename}': {e}")
|
|
|
|
|
|
|
|
|
|
|
|
return saved_paths
|
|
|
|
|
|
|
|
|
|
|
|
def create_additional_images(
|
|
|
|
|
|
self,
|
|
|
|
|
|
run_id: str,
|
|
|
|
|
|
topic_index: int,
|
|
|
|
|
|
variant_index: int,
|
|
|
|
|
|
poster_metadata_path: str,
|
|
|
|
|
|
source_image_dir: str,
|
|
|
|
|
|
num_additional_images: int = 3,
|
2025-04-26 15:53:44 +08:00
|
|
|
|
output_filename_template: str = "additional_{index}.jpg",
|
|
|
|
|
|
variation_strength: str = "medium",
|
|
|
|
|
|
extra_effects: bool = True
|
2025-04-26 14:53:54 +08:00
|
|
|
|
) -> List[str]:
|
2025-05-06 15:03:03 +08:00
|
|
|
|
"""选择未被海报使用的图像作为额外配图,并处理为3:4比例"""
|
|
|
|
|
|
logger.info(f"开始为主题 {topic_index} 变体 {variant_index} 选择额外配图")
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 获取候选图像
|
|
|
|
|
|
candidate_images = self.get_candidate_images(
|
|
|
|
|
|
poster_metadata_path,
|
|
|
|
|
|
source_image_dir,
|
|
|
|
|
|
num_additional_images
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if not candidate_images:
|
|
|
|
|
|
logger.warning("没有找到合适的候选图像")
|
|
|
|
|
|
return []
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 生成唯一的随机种子
|
|
|
|
|
|
seed_str = f"{run_id}_{topic_index}_{variant_index}"
|
|
|
|
|
|
seed = sum(ord(c) for c in seed_str)
|
|
|
|
|
|
logger.info(f"使用随机种子: {seed},基于: {seed_str}")
|
|
|
|
|
|
|
|
|
|
|
|
# 使用多进程并行处理图像
|
|
|
|
|
|
saved_paths = []
|
|
|
|
|
|
with concurrent.futures.ProcessPoolExecutor(max_workers=min(4, len(candidate_images))) as executor:
|
|
|
|
|
|
# 创建任务
|
|
|
|
|
|
future_to_image = {}
|
|
|
|
|
|
for i, image_filename in enumerate(candidate_images):
|
|
|
|
|
|
image_path = os.path.join(source_image_dir, image_filename)
|
|
|
|
|
|
# 为每个图像创建单独的种子
|
|
|
|
|
|
image_seed = seed + i
|
|
|
|
|
|
|
|
|
|
|
|
future = executor.submit(
|
|
|
|
|
|
self.process_single_image,
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
image_path,
|
|
|
|
|
|
image_filename,
|
|
|
|
|
|
i,
|
|
|
|
|
|
source_image_dir,
|
|
|
|
|
|
output_filename_template.format(index=i+1),
|
|
|
|
|
|
image_seed,
|
|
|
|
|
|
variation_strength,
|
|
|
|
|
|
extra_effects
|
|
|
|
|
|
)
|
|
|
|
|
|
future_to_image[future] = (i, image_filename)
|
|
|
|
|
|
|
|
|
|
|
|
# 收集结果
|
|
|
|
|
|
for future in concurrent.futures.as_completed(future_to_image):
|
|
|
|
|
|
i, image_filename = future_to_image[future]
|
|
|
|
|
|
try:
|
|
|
|
|
|
saved_path = future.result()
|
|
|
|
|
|
if saved_path:
|
|
|
|
|
|
saved_paths.append(saved_path)
|
|
|
|
|
|
logger.info(f"已保存额外配图 {i+1}/{len(candidate_images)}: {saved_path}")
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"处理图像时出错 '{image_filename}': {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
return saved_paths
|
|
|
|
|
|
|
|
|
|
|
|
def get_candidate_images(self, poster_metadata_path, source_image_dir, num_images):
|
|
|
|
|
|
"""获取候选图像列表,排除已用于海报的图像"""
|
2025-04-26 14:53:54 +08:00
|
|
|
|
# 检查输入路径是否存在
|
|
|
|
|
|
if not os.path.exists(poster_metadata_path):
|
|
|
|
|
|
logger.error(f"海报元数据不存在: {poster_metadata_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.exists(source_image_dir) or not os.path.isdir(source_image_dir):
|
|
|
|
|
|
logger.error(f"源图像目录不存在: {source_image_dir}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 从元数据文件中读取已使用的图像信息
|
|
|
|
|
|
try:
|
|
|
|
|
|
with open(poster_metadata_path, 'r', encoding='utf-8') as f:
|
|
|
|
|
|
poster_metadata = json.load(f)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"无法读取海报元数据: {e}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 获取已经在海报中使用的图像
|
|
|
|
|
|
used_images = []
|
|
|
|
|
|
if 'collage_images' in poster_metadata:
|
|
|
|
|
|
used_images = poster_metadata['collage_images']
|
|
|
|
|
|
logger.info(f"海报中已使用 {len(used_images)} 张图像: {', '.join(used_images)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 列出源目录中的所有图像文件
|
|
|
|
|
|
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp')
|
|
|
|
|
|
available_images = [
|
|
|
|
|
|
f for f in os.listdir(source_image_dir)
|
|
|
|
|
|
if os.path.isfile(os.path.join(source_image_dir, f)) and
|
|
|
|
|
|
f.lower().endswith(image_extensions)
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
if not available_images:
|
|
|
|
|
|
logger.error(f"源目录中没有找到图像: {source_image_dir}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"源目录中找到 {len(available_images)} 张图像")
|
|
|
|
|
|
|
|
|
|
|
|
# 过滤掉已经在海报中使用的图像
|
|
|
|
|
|
available_images = [img for img in available_images if img not in used_images]
|
|
|
|
|
|
|
|
|
|
|
|
if not available_images:
|
|
|
|
|
|
logger.warning("所有图像都已在海报中使用,无法创建额外配图")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"过滤后可用图像数量: {len(available_images)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 如果可用图像少于请求数量,进行警告但继续处理
|
2025-05-06 15:03:03 +08:00
|
|
|
|
if len(available_images) < num_images:
|
2025-04-26 14:53:54 +08:00
|
|
|
|
logger.warning(
|
2025-05-06 15:03:03 +08:00
|
|
|
|
f"可用图像数量 ({len(available_images)}) 少于请求的配图数量 ({num_images}),"
|
2025-04-26 14:53:54 +08:00
|
|
|
|
f"将使用所有可用图像"
|
|
|
|
|
|
)
|
|
|
|
|
|
selected_images = available_images
|
|
|
|
|
|
else:
|
|
|
|
|
|
# 随机选择额外图像
|
2025-05-06 15:03:03 +08:00
|
|
|
|
random.seed(sum(map(ord, ''.join(available_images)))) # 确保结果一致性
|
|
|
|
|
|
selected_images = random.sample(available_images, num_images)
|
|
|
|
|
|
random.seed() # 重置随机种子
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
return selected_images
|
|
|
|
|
|
|
|
|
|
|
|
def process_single_image(
|
|
|
|
|
|
self,
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
image_path,
|
|
|
|
|
|
image_filename,
|
|
|
|
|
|
index,
|
|
|
|
|
|
source_dir,
|
|
|
|
|
|
output_filename,
|
|
|
|
|
|
seed,
|
|
|
|
|
|
variation_strength,
|
|
|
|
|
|
extra_effects
|
|
|
|
|
|
):
|
|
|
|
|
|
"""处理单张图像 - 此方法可在独立进程中运行"""
|
|
|
|
|
|
try:
|
|
|
|
|
|
# 加载图像
|
|
|
|
|
|
image = Image.open(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
# 处理图像为3:4比例,并添加微小变化
|
|
|
|
|
|
processed_image = self.optimized_process_image(
|
|
|
|
|
|
image,
|
|
|
|
|
|
(3, 4),
|
|
|
|
|
|
add_variation=True,
|
|
|
|
|
|
seed=seed,
|
|
|
|
|
|
variation_strength=variation_strength,
|
|
|
|
|
|
extra_effects=extra_effects
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 创建元数据
|
|
|
|
|
|
additional_metadata = {
|
|
|
|
|
|
"original_image": image_filename,
|
|
|
|
|
|
"additional_index": index + 1,
|
|
|
|
|
|
"source_dir": source_dir,
|
|
|
|
|
|
"is_additional_image": True,
|
|
|
|
|
|
"processed": True,
|
|
|
|
|
|
"aspect_ratio": "3:4",
|
|
|
|
|
|
"variation_applied": True,
|
|
|
|
|
|
"variation_strength": variation_strength,
|
|
|
|
|
|
"extra_effects": extra_effects
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# 使用输出处理器保存图像
|
|
|
|
|
|
return self.output_handler.handle_generated_image(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
'additional', # 图像类型为additional
|
|
|
|
|
|
processed_image,
|
|
|
|
|
|
output_filename,
|
|
|
|
|
|
additional_metadata
|
|
|
|
|
|
)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"处理图像时出错 '{image_filename}': {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
def add_dct_noise(self, image: Image.Image, intensity: float = 0.1, block_size: int = 8) -> Image.Image:
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""
|
2025-05-06 16:34:46 +08:00
|
|
|
|
在DCT域添加噪声以对抗pHash (需要Scipy)
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
Args:
|
2025-05-06 16:34:46 +08:00
|
|
|
|
image: 输入图像 (建议传入灰度图或处理亮度通道)
|
|
|
|
|
|
intensity: 噪声强度 (0-1)
|
|
|
|
|
|
block_size: DCT块大小 (通常为8)
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
Returns:
|
2025-05-06 16:34:46 +08:00
|
|
|
|
添加噪声后的图像
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""
|
2025-05-06 16:34:46 +08:00
|
|
|
|
if not SCIPY_AVAILABLE:
|
|
|
|
|
|
logger.warning("Scipy 未安装,无法执行DCT噪声注入。请运行 'pip install scipy'")
|
|
|
|
|
|
# 可以选择返回原图,或执行一个简化的备用方案
|
|
|
|
|
|
# 这里我们返回原图
|
|
|
|
|
|
return image
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
try:
|
|
|
|
|
|
# 确保是灰度图或提取亮度通道 (这里以灰度为例)
|
|
|
|
|
|
if image.mode != 'L':
|
|
|
|
|
|
# 如果是彩色图,可以在 Y 通道 (亮度) 操作
|
|
|
|
|
|
# 为了简化,我们先转为灰度处理
|
|
|
|
|
|
gray_image = image.convert('L')
|
|
|
|
|
|
else:
|
|
|
|
|
|
gray_image = image
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
img_array = np.array(gray_image, dtype=float)
|
|
|
|
|
|
h, w = img_array.shape
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 确保尺寸是块大小的倍数
|
|
|
|
|
|
h_pad = (block_size - h % block_size) % block_size
|
|
|
|
|
|
w_pad = (block_size - w % block_size) % block_size
|
|
|
|
|
|
if h_pad != 0 or w_pad != 0:
|
|
|
|
|
|
img_array = np.pad(img_array, ((0, h_pad), (0, w_pad)), mode='reflect')
|
|
|
|
|
|
padded_h, padded_w = img_array.shape
|
|
|
|
|
|
else:
|
|
|
|
|
|
padded_h, padded_w = h, w
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 分块处理
|
|
|
|
|
|
for y in range(0, padded_h, block_size):
|
|
|
|
|
|
for x in range(0, padded_w, block_size):
|
|
|
|
|
|
block = img_array[y:y+block_size, x:x+block_size]
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 执行2D DCT
|
|
|
|
|
|
dct_block = dct(dct(block.T, norm='ortho').T, norm='ortho')
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 在非DC系数上添加噪声 (跳过 dct_block[0, 0])
|
|
|
|
|
|
# 噪声强度与系数幅度相关,避免在小系数上加过大噪声
|
|
|
|
|
|
noise = np.random.randn(block_size, block_size) * intensity * np.abs(dct_block)
|
|
|
|
|
|
# noise = np.random.uniform(-intensity*50, intensity*50, (block_size, block_size))
|
|
|
|
|
|
noise[0, 0] = 0 # 不改变DC系数
|
|
|
|
|
|
|
|
|
|
|
|
# 将噪声添加到DCT系数
|
|
|
|
|
|
noisy_dct_block = dct_block + noise
|
|
|
|
|
|
|
|
|
|
|
|
# 执行2D IDCT
|
|
|
|
|
|
idct_block = idct(idct(noisy_dct_block.T, norm='ortho').T, norm='ortho')
|
|
|
|
|
|
|
|
|
|
|
|
# 将处理后的块放回图像数组
|
|
|
|
|
|
img_array[y:y+block_size, x:x+block_size] = idct_block
|
|
|
|
|
|
|
|
|
|
|
|
# 裁剪回原始尺寸 (如果有填充)
|
|
|
|
|
|
if h_pad != 0 or w_pad != 0:
|
|
|
|
|
|
img_array = img_array[:h, :w]
|
|
|
|
|
|
|
|
|
|
|
|
# 裁剪像素值并转换类型
|
|
|
|
|
|
img_array = np.clip(img_array, 0, 255)
|
|
|
|
|
|
modified_gray = Image.fromarray(img_array.astype(np.uint8))
|
|
|
|
|
|
|
|
|
|
|
|
# 如果原图是彩色,将修改后的亮度通道合并回去
|
|
|
|
|
|
if image.mode == 'RGB' and gray_image is not image:
|
|
|
|
|
|
# 注意:简单替换亮度通道可能效果不好,混合通常更好
|
|
|
|
|
|
# 这里用混合的方式
|
|
|
|
|
|
blend_factor = 0.3 # 控制混合强度
|
|
|
|
|
|
r, g, b = image.split()
|
|
|
|
|
|
r = Image.blend(r, modified_gray, blend_factor)
|
|
|
|
|
|
g = Image.blend(g, modified_gray, blend_factor)
|
|
|
|
|
|
b = Image.blend(b, modified_gray, blend_factor)
|
|
|
|
|
|
return Image.merge('RGB', (r, g, b))
|
|
|
|
|
|
else:
|
|
|
|
|
|
# 如果原图是灰度或处理失败,返回修改后的灰度图
|
|
|
|
|
|
return modified_gray
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"DCT噪声注入出错: {e}")
|
|
|
|
|
|
return image # 出错时返回原图
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
def add_phash_noise(self, image: Image.Image, intensity: float = 0.05) -> Image.Image:
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""
|
2025-05-06 16:34:46 +08:00
|
|
|
|
添加扰动以对抗感知哈希算法(pHash)
|
|
|
|
|
|
现在调用基于 Scipy 的 DCT 噪声注入方法
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
2025-05-06 16:34:46 +08:00
|
|
|
|
intensity: 扰动强度(0-1)
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
Returns:
|
2025-05-06 16:34:46 +08:00
|
|
|
|
添加扰动后的图像
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""
|
2025-05-06 16:34:46 +08:00
|
|
|
|
return self.add_dct_noise(image, intensity=intensity)
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 15:49:31 +08:00
|
|
|
|
def optimize_anti_hash_methods(self, image: Image.Image, strength: str = "medium") -> Image.Image:
|
|
|
|
|
|
"""
|
2025-05-06 16:34:46 +08:00
|
|
|
|
综合优化的哈希对抗方法,强度已增加
|
2025-05-06 15:49:31 +08:00
|
|
|
|
"""
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 根据强度设置参数 (显著增加 high 强度)
|
2025-05-06 15:49:31 +08:00
|
|
|
|
if strength == "low":
|
|
|
|
|
|
ahash_intensity = 0.03
|
2025-05-06 16:34:46 +08:00
|
|
|
|
phash_intensity = 0.05 # 基础DCT噪声强度
|
2025-05-06 15:49:31 +08:00
|
|
|
|
dhash_intensity = 0.03
|
2025-05-06 16:34:46 +08:00
|
|
|
|
region_flip_prob = 0.3
|
|
|
|
|
|
num_ahash_blocks = random.randint(8, 15)
|
|
|
|
|
|
num_dhash_lines = random.randint(6, 10)
|
2025-05-06 15:49:31 +08:00
|
|
|
|
elif strength == "high":
|
2025-05-06 16:34:46 +08:00
|
|
|
|
ahash_intensity = 0.18 # 大幅增加
|
|
|
|
|
|
phash_intensity = 0.15 # 大幅增加
|
|
|
|
|
|
dhash_intensity = 0.18 # 大幅增加
|
|
|
|
|
|
region_flip_prob = 0.7 # 更大概率翻转
|
|
|
|
|
|
num_ahash_blocks = random.randint(20, 35) # 更多块
|
|
|
|
|
|
num_dhash_lines = random.randint(15, 25) # 更多线
|
2025-05-06 15:49:31 +08:00
|
|
|
|
else: # medium
|
2025-05-06 16:34:46 +08:00
|
|
|
|
ahash_intensity = 0.08 # 增加
|
|
|
|
|
|
phash_intensity = 0.08 # 增加
|
|
|
|
|
|
dhash_intensity = 0.08 # 增加
|
|
|
|
|
|
region_flip_prob = 0.5
|
|
|
|
|
|
num_ahash_blocks = random.randint(12, 25)
|
|
|
|
|
|
num_dhash_lines = random.randint(10, 18)
|
|
|
|
|
|
|
|
|
|
|
|
# 1. 针对aHash (平均哈希)的处理 - 强度已增加
|
|
|
|
|
|
img_array = np.array(image, dtype=np.int16)
|
2025-05-06 15:49:31 +08:00
|
|
|
|
h, w = img_array.shape[0], img_array.shape[1]
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# num_ahash_blocks = random.randint(10, 20)
|
|
|
|
|
|
for _ in range(num_ahash_blocks):
|
2025-05-06 15:49:31 +08:00
|
|
|
|
block_w = random.randint(w//20, w//10)
|
|
|
|
|
|
block_h = random.randint(h//20, h//10)
|
|
|
|
|
|
x = random.randint(0, w - block_w)
|
|
|
|
|
|
y = random.randint(0, h - block_h)
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
delta = int(random.uniform(-35, 35) * ahash_intensity) # 增加delta范围
|
|
|
|
|
|
|
|
|
|
|
|
block = img_array[y:y+block_h, x:x+block_w]
|
|
|
|
|
|
img_array[y:y+block_h, x:x+block_w] = np.clip(block + delta, 0, 255)
|
|
|
|
|
|
|
2025-05-06 15:49:31 +08:00
|
|
|
|
image = Image.fromarray(img_array.astype(np.uint8))
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 2. 调用强化的pHash对抗方法
|
2025-05-06 15:49:31 +08:00
|
|
|
|
image = self.add_phash_noise(image, intensity=phash_intensity)
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 3. 针对dHash (差值哈希)的处理 - 强度已增加
|
|
|
|
|
|
img_array = np.array(image, dtype=np.int16)
|
|
|
|
|
|
h, w = img_array.shape[0], img_array.shape[1]
|
2025-05-06 15:49:31 +08:00
|
|
|
|
|
|
|
|
|
|
mask = np.zeros_like(img_array, dtype=bool)
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# num_dhash_lines = random.randint(8, 12)
|
|
|
|
|
|
for _ in range(num_dhash_lines):
|
|
|
|
|
|
if random.random() < 0.5:
|
2025-05-06 15:49:31 +08:00
|
|
|
|
y = random.randint(0, h - 1)
|
2025-05-06 16:34:46 +08:00
|
|
|
|
line_width = random.randint(1, 4) # 增加线宽可能性
|
|
|
|
|
|
if len(mask.shape) == 3:
|
2025-05-06 15:49:31 +08:00
|
|
|
|
mask[max(0, y-line_width//2):min(h, y+line_width//2+1), :, :] = True
|
2025-05-06 16:34:46 +08:00
|
|
|
|
else:
|
2025-05-06 15:49:31 +08:00
|
|
|
|
mask[max(0, y-line_width//2):min(h, y+line_width//2+1), :] = True
|
2025-05-06 16:34:46 +08:00
|
|
|
|
else:
|
2025-05-06 15:49:31 +08:00
|
|
|
|
x = random.randint(0, w - 1)
|
2025-05-06 16:34:46 +08:00
|
|
|
|
line_width = random.randint(1, 4) # 增加线宽可能性
|
|
|
|
|
|
if len(mask.shape) == 3:
|
2025-05-06 15:49:31 +08:00
|
|
|
|
mask[:, max(0, x-line_width//2):min(w, x+line_width//2+1), :] = True
|
2025-05-06 16:34:46 +08:00
|
|
|
|
else:
|
2025-05-06 15:49:31 +08:00
|
|
|
|
mask[:, max(0, x-line_width//2):min(w, x+line_width//2+1)] = True
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
delta = (np.random.random(img_array.shape) * 2 - 1) * dhash_intensity * 35 # 增加delta范围
|
|
|
|
|
|
img_array[mask] += delta[mask].astype(np.int16)
|
2025-05-06 15:49:31 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
img_array = np.clip(img_array, 0, 255)
|
2025-05-06 15:49:31 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 4. 颜色直方图扰动 (强度也略微增加)
|
|
|
|
|
|
image = Image.fromarray(img_array.astype(np.uint8))
|
|
|
|
|
|
color_hist_strength = dhash_intensity * 0.6 # 关联强度
|
|
|
|
|
|
image = self.perturb_color_histogram(image, strength=color_hist_strength)
|
2025-05-06 15:49:31 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 5. 区域翻转 - 强度已增加
|
|
|
|
|
|
if random.random() < region_flip_prob:
|
2025-05-06 15:49:31 +08:00
|
|
|
|
img_array = np.array(image)
|
2025-05-06 16:34:46 +08:00
|
|
|
|
h, w = img_array.shape[0], img_array.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
# 增加区域大小可能性
|
|
|
|
|
|
max_region_factor = 15 if strength == 'high' else 20
|
|
|
|
|
|
region_w = random.randint(w//(max_region_factor+5), w//max_region_factor)
|
|
|
|
|
|
region_h = random.randint(h//(max_region_factor+5), h//max_region_factor)
|
2025-05-06 15:49:31 +08:00
|
|
|
|
x = random.randint(0, w - region_w)
|
|
|
|
|
|
y = random.randint(0, h - region_h)
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 加入90度旋转的可能性
|
|
|
|
|
|
action = random.choice(['flip_h', 'flip_v', 'rotate_90']) if strength != 'low' else random.choice(['flip_h', 'flip_v'])
|
|
|
|
|
|
|
|
|
|
|
|
region = img_array[y:y+region_h, x:x+region_w]
|
|
|
|
|
|
if action == 'flip_h':
|
|
|
|
|
|
img_array[y:y+region_h, x:x+region_w] = region[:, ::-1]
|
|
|
|
|
|
elif action == 'flip_v':
|
|
|
|
|
|
img_array[y:y+region_h, x:x+region_w] = region[::-1, :]
|
|
|
|
|
|
elif action == 'rotate_90' and len(img_array.shape) == 3: # 旋转只对原尺寸区域有效
|
|
|
|
|
|
# 注意:旋转可能需要调整区域大小或填充,这里简化处理
|
|
|
|
|
|
# 仅在区域接近正方形时效果较好
|
|
|
|
|
|
if abs(region_w - region_h) < 5:
|
|
|
|
|
|
rotated_region = np.rot90(region)
|
|
|
|
|
|
# 需要确保旋转后尺寸匹配,如果尺寸变化则跳过或填充
|
|
|
|
|
|
if rotated_region.shape[0] == region_h and rotated_region.shape[1] == region_w:
|
|
|
|
|
|
img_array[y:y+region_h, x:x+region_w] = rotated_region
|
2025-05-06 15:49:31 +08:00
|
|
|
|
|
|
|
|
|
|
image = Image.fromarray(img_array)
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 6. (新增可选) 轻微高斯噪声 - 对所有哈希都有轻微普适性干扰
|
|
|
|
|
|
if strength != 'low' and random.random() < 0.4:
|
|
|
|
|
|
img_array = np.array(image)
|
|
|
|
|
|
noise_sigma = 1.0 if strength == 'medium' else 2.0 # 噪声标准差
|
|
|
|
|
|
noise = np.random.normal(0, noise_sigma, img_array.shape)
|
|
|
|
|
|
img_array = np.clip(img_array + noise, 0, 255).astype(np.uint8)
|
|
|
|
|
|
image = Image.fromarray(img_array)
|
|
|
|
|
|
|
2025-05-06 15:49:31 +08:00
|
|
|
|
return image
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
def optimized_process_image(
|
2025-04-26 15:53:44 +08:00
|
|
|
|
self,
|
|
|
|
|
|
image: Image.Image,
|
|
|
|
|
|
target_ratio: Tuple[int, int],
|
|
|
|
|
|
add_variation: bool = True,
|
|
|
|
|
|
seed: int = None,
|
2025-05-06 15:03:03 +08:00
|
|
|
|
variation_strength: str = "medium",
|
|
|
|
|
|
extra_effects: bool = True
|
2025-04-26 15:53:44 +08:00
|
|
|
|
) -> Image.Image:
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""优化后的图像处理方法,使用更高效的算法,添加反查重技术"""
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 设置随机种子
|
2025-04-26 15:53:44 +08:00
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed(seed)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
np.random.seed(seed)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 根据微调强度设置参数
|
2025-04-26 15:53:44 +08:00
|
|
|
|
if variation_strength == "low":
|
2025-05-06 15:03:03 +08:00
|
|
|
|
brightness_factor = random.uniform(0.97, 1.03)
|
|
|
|
|
|
contrast_factor = random.uniform(0.97, 1.03)
|
|
|
|
|
|
saturation_factor = random.uniform(0.97, 1.03)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
max_rotation = 0.5
|
2025-05-06 15:03:03 +08:00
|
|
|
|
border_size = random.randint(0, 1)
|
|
|
|
|
|
use_extra = random.random() < 0.3 and extra_effects
|
2025-04-26 15:53:44 +08:00
|
|
|
|
elif variation_strength == "high":
|
2025-05-06 15:03:03 +08:00
|
|
|
|
brightness_factor = random.uniform(0.92, 1.08)
|
|
|
|
|
|
contrast_factor = random.uniform(0.92, 1.08)
|
|
|
|
|
|
saturation_factor = random.uniform(0.92, 1.08)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
max_rotation = 2.0
|
2025-05-06 15:03:03 +08:00
|
|
|
|
border_size = random.randint(0, 3)
|
|
|
|
|
|
use_extra = extra_effects
|
|
|
|
|
|
else: # medium
|
|
|
|
|
|
brightness_factor = random.uniform(0.95, 1.05)
|
|
|
|
|
|
contrast_factor = random.uniform(0.95, 1.05)
|
|
|
|
|
|
saturation_factor = random.uniform(0.95, 1.05)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
max_rotation = 1.0
|
2025-05-06 15:03:03 +08:00
|
|
|
|
border_size = random.randint(0, 2)
|
|
|
|
|
|
use_extra = random.random() < 0.7 and extra_effects
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 调整图像为目标比例
|
2025-04-26 15:53:44 +08:00
|
|
|
|
width, height = image.size
|
|
|
|
|
|
current_ratio = width / height
|
|
|
|
|
|
target_ratio_value = target_ratio[0] / target_ratio[1]
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 调整大小
|
2025-04-26 15:53:44 +08:00
|
|
|
|
if current_ratio > target_ratio_value: # 图片较宽
|
2025-05-06 15:03:03 +08:00
|
|
|
|
new_height = 1200
|
2025-04-26 15:53:44 +08:00
|
|
|
|
new_width = int(new_height * current_ratio)
|
|
|
|
|
|
else: # 图片较高
|
2025-05-06 15:03:03 +08:00
|
|
|
|
new_width = 900
|
2025-04-26 15:53:44 +08:00
|
|
|
|
new_height = int(new_width / current_ratio)
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 高效调整尺寸
|
2025-04-26 15:53:44 +08:00
|
|
|
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 裁剪为目标比例
|
2025-04-26 15:53:44 +08:00
|
|
|
|
resized_width, resized_height = resized_image.size
|
2025-05-06 15:03:03 +08:00
|
|
|
|
if resized_width / resized_height > target_ratio_value:
|
2025-04-26 15:53:44 +08:00
|
|
|
|
crop_width = int(resized_height * target_ratio_value)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
max_offset = max(1, min(10, (resized_width - crop_width) // 10))
|
|
|
|
|
|
offset = random.randint(-max_offset, max_offset) if add_variation else 0
|
|
|
|
|
|
crop_x1 = max(0, min((resized_width - crop_width) // 2 + offset, resized_width - crop_width))
|
2025-04-26 15:53:44 +08:00
|
|
|
|
crop_x2 = crop_x1 + crop_width
|
|
|
|
|
|
result = resized_image.crop((crop_x1, 0, crop_x2, resized_height))
|
2025-05-06 15:03:03 +08:00
|
|
|
|
else:
|
2025-04-26 15:53:44 +08:00
|
|
|
|
crop_height = int(resized_width / target_ratio_value)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
max_offset = max(1, min(10, (resized_height - crop_height) // 10))
|
|
|
|
|
|
offset = random.randint(-max_offset, max_offset) if add_variation else 0
|
|
|
|
|
|
crop_y1 = max(0, min((resized_height - crop_height) // 2 + offset, resized_height - crop_height))
|
2025-04-26 15:53:44 +08:00
|
|
|
|
crop_y2 = crop_y1 + crop_height
|
|
|
|
|
|
result = resized_image.crop((0, crop_y1, resized_width, crop_y2))
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 如果不需要变化或是低强度且禁用额外效果
|
2025-05-06 15:19:37 +08:00
|
|
|
|
if not add_variation:
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 重置随机种子
|
2025-04-26 15:53:44 +08:00
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed()
|
2025-05-06 15:03:03 +08:00
|
|
|
|
np.random.seed()
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
# 清除元数据后返回
|
|
|
|
|
|
return self.strip_metadata(result)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 高效应用基本变化
|
|
|
|
|
|
processed_image = result.convert('RGB')
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 1. 亮度调整
|
|
|
|
|
|
if abs(brightness_factor - 1.0) > 0.01:
|
|
|
|
|
|
enhancer = ImageEnhance.Brightness(processed_image)
|
|
|
|
|
|
processed_image = enhancer.enhance(brightness_factor)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 2. 对比度调整
|
|
|
|
|
|
if abs(contrast_factor - 1.0) > 0.01:
|
|
|
|
|
|
enhancer = ImageEnhance.Contrast(processed_image)
|
|
|
|
|
|
processed_image = enhancer.enhance(contrast_factor)
|
|
|
|
|
|
|
|
|
|
|
|
# 3. 饱和度调整
|
|
|
|
|
|
if abs(saturation_factor - 1.0) > 0.01:
|
|
|
|
|
|
enhancer = ImageEnhance.Color(processed_image)
|
|
|
|
|
|
processed_image = enhancer.enhance(saturation_factor)
|
|
|
|
|
|
|
|
|
|
|
|
# 4. 旋转 (只在中高强度时应用)
|
|
|
|
|
|
if variation_strength != "low" and abs(max_rotation) > 0.1:
|
|
|
|
|
|
rotation_angle = random.uniform(-max_rotation, max_rotation)
|
|
|
|
|
|
if abs(rotation_angle) > 0.1: # 只有当角度足够大时才旋转
|
|
|
|
|
|
processed_image = processed_image.rotate(rotation_angle, resample=Image.BICUBIC, expand=False)
|
|
|
|
|
|
|
2025-05-06 15:19:37 +08:00
|
|
|
|
# 5. 新增 - 应用反查重技术
|
|
|
|
|
|
# 根据变化强度选择性应用
|
|
|
|
|
|
if use_extra:
|
2025-05-06 15:49:31 +08:00
|
|
|
|
# 使用综合优化的哈希对抗方法
|
|
|
|
|
|
processed_image = self.optimize_anti_hash_methods(processed_image, variation_strength)
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 应用额外效果 (只在需要时)
|
|
|
|
|
|
if use_extra:
|
|
|
|
|
|
# 根据强度决定是否应用特定效果
|
|
|
|
|
|
apply_sharpen = random.random() < 0.4
|
|
|
|
|
|
apply_blur = not apply_sharpen and random.random() < 0.3
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 锐化
|
|
|
|
|
|
if apply_sharpen:
|
|
|
|
|
|
enhancer = ImageEnhance.Sharpness(processed_image)
|
|
|
|
|
|
sharpness = 1.2 if variation_strength == "high" else 1.1
|
|
|
|
|
|
processed_image = enhancer.enhance(sharpness)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 模糊
|
|
|
|
|
|
elif apply_blur:
|
|
|
|
|
|
radius = 0.7 if variation_strength == "high" else 0.4
|
|
|
|
|
|
processed_image = processed_image.filter(ImageFilter.GaussianBlur(radius=radius))
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 边框处理 (在图像不太小的情况下)
|
|
|
|
|
|
if border_size > 0 and min(processed_image.size) > 300:
|
|
|
|
|
|
border_color = (
|
|
|
|
|
|
random.randint(0, 5),
|
|
|
|
|
|
random.randint(0, 5),
|
|
|
|
|
|
random.randint(0, 5)
|
|
|
|
|
|
)
|
|
|
|
|
|
w, h = processed_image.size
|
|
|
|
|
|
bordered = Image.new('RGB', (w + border_size*2, h + border_size*2), border_color)
|
|
|
|
|
|
bordered.paste(processed_image, (border_size, border_size))
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 随机裁剪回原尺寸
|
|
|
|
|
|
offset_x = random.randint(0, border_size*2)
|
|
|
|
|
|
offset_y = random.randint(0, border_size*2)
|
|
|
|
|
|
processed_image = bordered.crop((offset_x, offset_y, offset_x + w, offset_y + h))
|
|
|
|
|
|
|
2025-05-06 15:19:37 +08:00
|
|
|
|
# 6. 始终清除元数据 - 最后一步
|
|
|
|
|
|
processed_image = self.strip_metadata(processed_image)
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 重置随机种子
|
|
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed()
|
|
|
|
|
|
np.random.seed()
|
|
|
|
|
|
|
|
|
|
|
|
return processed_image
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
def perturb_color_histogram(self, image: Image.Image, strength: float = 0.03) -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
扰动图像的颜色直方图,对抗基于颜色统计的图像匹配
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
strength: 扰动强度(0-1)
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
处理后的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
# 确保为RGB模式
|
|
|
|
|
|
if image.mode != 'RGB':
|
|
|
|
|
|
image = image.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
# 转为numpy数组
|
|
|
|
|
|
img_array = np.array(image)
|
|
|
|
|
|
height, width, channels = img_array.shape
|
|
|
|
|
|
|
|
|
|
|
|
# 对每个通道分别处理
|
|
|
|
|
|
for channel in range(channels):
|
|
|
|
|
|
# 计算当前通道的直方图
|
|
|
|
|
|
hist, _ = np.histogram(img_array[:,:,channel].flatten(), bins=64, range=(0, 256))
|
|
|
|
|
|
|
|
|
|
|
|
# 找出主要颜色区间 (频率高的区间)
|
|
|
|
|
|
threshold = np.percentile(hist, 70) # 取前30%的颜色块
|
|
|
|
|
|
significant_bins = np.where(hist > threshold)[0]
|
|
|
|
|
|
|
|
|
|
|
|
if len(significant_bins) > 0:
|
|
|
|
|
|
for bin_idx in significant_bins:
|
|
|
|
|
|
# 计算当前bin对应的颜色范围
|
|
|
|
|
|
bin_width = 256 // 64
|
|
|
|
|
|
color_low = bin_idx * bin_width
|
|
|
|
|
|
color_high = (bin_idx + 1) * bin_width
|
|
|
|
|
|
|
|
|
|
|
|
# 创建颜色范围掩码
|
|
|
|
|
|
mask = (img_array[:,:,channel] >= color_low) & (img_array[:,:,channel] < color_high)
|
|
|
|
|
|
|
|
|
|
|
|
if np.any(mask):
|
|
|
|
|
|
# 生成随机偏移值
|
|
|
|
|
|
offset = int(strength * bin_width * (random.random() - 0.5) * 2)
|
|
|
|
|
|
|
|
|
|
|
|
# 应用偏移,确保在0-255范围内
|
|
|
|
|
|
img_array[:,:,channel][mask] = np.clip(
|
|
|
|
|
|
img_array[:,:,channel][mask] + offset, 0, 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
# 转回PIL图像
|
|
|
|
|
|
return Image.fromarray(img_array)
|
|
|
|
|
|
|
|
|
|
|
|
def strip_metadata(self, image: Image.Image) -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
移除图像中的所有元数据
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
无元数据的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
# 创建无元数据的副本
|
|
|
|
|
|
data = io.BytesIO()
|
|
|
|
|
|
image.save(data, format=image.format if image.format else 'PNG')
|
|
|
|
|
|
return Image.open(data)
|
|
|
|
|
|
|
2025-04-26 14:53:54 +08:00
|
|
|
|
def process_poster_for_notes(
|
|
|
|
|
|
run_id: str,
|
|
|
|
|
|
topic_index: int,
|
|
|
|
|
|
variant_index: int,
|
|
|
|
|
|
poster_image_path: str,
|
|
|
|
|
|
poster_metadata_path: str,
|
|
|
|
|
|
source_image_dir: str,
|
|
|
|
|
|
num_additional_images: int,
|
|
|
|
|
|
output_handler: OutputHandler,
|
|
|
|
|
|
output_filename_template: str = "note_{index}.jpg"
|
|
|
|
|
|
) -> List[str]:
|
|
|
|
|
|
"""
|
|
|
|
|
|
处理海报并创建笔记图像
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
run_id: 运行ID
|
|
|
|
|
|
topic_index: 主题索引
|
|
|
|
|
|
variant_index: 变体索引
|
|
|
|
|
|
poster_image_path: 海报图像路径
|
|
|
|
|
|
poster_metadata_path: 海报元数据路径
|
|
|
|
|
|
source_image_dir: 源图像目录
|
|
|
|
|
|
num_additional_images: 要使用的额外图像数量
|
|
|
|
|
|
output_handler: 输出处理器
|
|
|
|
|
|
output_filename_template: 输出文件名模板
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
List[str]: 保存的笔记图像路径列表
|
|
|
|
|
|
"""
|
|
|
|
|
|
logger.info(f"开始为海报创建笔记图像: {poster_image_path}")
|
|
|
|
|
|
|
|
|
|
|
|
# 验证输入
|
|
|
|
|
|
if not os.path.exists(poster_image_path):
|
|
|
|
|
|
logger.error(f"海报图像不存在: {poster_image_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 创建处理器实例并处理
|
|
|
|
|
|
creator = PosterNotesCreator(output_handler)
|
|
|
|
|
|
return creator.create_notes_images(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
poster_image_path,
|
|
|
|
|
|
poster_metadata_path,
|
|
|
|
|
|
source_image_dir,
|
|
|
|
|
|
num_additional_images,
|
|
|
|
|
|
output_filename_template
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def select_additional_images(
|
|
|
|
|
|
run_id: str,
|
|
|
|
|
|
topic_index: int,
|
|
|
|
|
|
variant_index: int,
|
|
|
|
|
|
poster_metadata_path: str,
|
|
|
|
|
|
source_image_dir: str,
|
|
|
|
|
|
num_additional_images: int,
|
|
|
|
|
|
output_handler: OutputHandler,
|
2025-04-26 15:53:44 +08:00
|
|
|
|
output_filename_template: str = "additional_{index}.jpg",
|
|
|
|
|
|
variation_strength: str = "medium",
|
|
|
|
|
|
extra_effects: bool = True
|
2025-04-26 14:53:54 +08:00
|
|
|
|
) -> List[str]:
|
|
|
|
|
|
"""
|
2025-04-26 15:53:44 +08:00
|
|
|
|
选择未被海报使用的图像作为额外配图,并处理为3:4比例
|
2025-04-26 14:53:54 +08:00
|
|
|
|
"""
|
|
|
|
|
|
logger.info(f"开始为主题 {topic_index} 变体 {variant_index} 选择额外配图")
|
|
|
|
|
|
|
|
|
|
|
|
# 验证输入
|
|
|
|
|
|
if not os.path.exists(poster_metadata_path):
|
|
|
|
|
|
logger.error(f"海报元数据不存在: {poster_metadata_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 创建处理器实例
|
2025-04-26 14:53:54 +08:00
|
|
|
|
creator = PosterNotesCreator(output_handler)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
|
|
|
|
|
|
# 使用优化后的方法处理图像
|
2025-04-26 14:53:54 +08:00
|
|
|
|
return creator.create_additional_images(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
poster_metadata_path,
|
|
|
|
|
|
source_image_dir,
|
|
|
|
|
|
num_additional_images,
|
2025-04-26 15:53:44 +08:00
|
|
|
|
output_filename_template,
|
|
|
|
|
|
variation_strength,
|
|
|
|
|
|
extra_effects
|
2025-04-26 14:53:54 +08:00
|
|
|
|
)
|