TravelContentCreator/utils/poster_notes_creator.py

972 lines
40 KiB
Python
Raw Normal View History

2025-04-26 14:53:54 +08:00
import os
import random
import logging
import json
2025-05-06 17:11:29 +08:00
from PIL import Image, ImageChops
2025-04-26 14:53:54 +08:00
import traceback
from typing import List, Tuple, Dict, Any, Optional
import concurrent.futures
import numpy as np
from PIL import ImageEnhance, ImageFilter
2025-04-26 14:53:54 +08:00
from .output_handler import OutputHandler
import io
2025-04-26 14:53:54 +08:00
2025-05-06 16:34:46 +08:00
# 尝试导入 scipy如果失败则标记
try:
from scipy.fftpack import dct, idct
SCIPY_AVAILABLE = True
except ImportError:
SCIPY_AVAILABLE = False
dct = None
idct = None
2025-04-26 14:53:54 +08:00
logger = logging.getLogger(__name__)
class PosterNotesCreator:
"""
处理原始海报作为主图并随机选择额外的图片作为笔记图片
确保选择的笔记图片与海报中使用的图片不重复
"""
def __init__(self, output_handler: OutputHandler):
"""
初始化 PosterNotesCreator
Args:
output_handler: 可选的 OutputHandler 实例用于处理输出
"""
self.output_handler = output_handler
logging.info("PosterNotesCreator 初始化完成")
def create_notes_images(
self,
run_id: str,
topic_index: int,
variant_index: int,
poster_image_path: str,
poster_metadata_path: str,
source_image_dir: str,
num_additional_images: int,
output_filename_template: str = "note_{index}.jpg"
) -> List[str]:
"""
创建笔记图像
Args:
run_id: 运行ID
topic_index: 主题索引
variant_index: 变体索引
poster_image_path: 海报图像路径
poster_metadata_path: 海报元数据路径
source_image_dir: 源图像目录
num_additional_images: 要使用的额外图像数量
output_filename_template: 输出文件名模板
Returns:
List[str]: 保存的笔记图像路径列表
"""
# 检查输入路径是否存在
if not os.path.exists(poster_image_path):
logger.error(f"海报图像不存在: {poster_image_path}")
return []
if not os.path.exists(poster_metadata_path):
logger.error(f"海报元数据不存在: {poster_metadata_path}")
return []
if not os.path.exists(source_image_dir) or not os.path.isdir(source_image_dir):
logger.error(f"源图像目录不存在: {source_image_dir}")
return []
# 从元数据文件中读取已使用的图像信息
try:
with open(poster_metadata_path, 'r', encoding='utf-8') as f:
poster_metadata = json.load(f)
except Exception as e:
logger.error(f"无法读取海报元数据: {e}")
return []
# 获取已经在海报中使用的图像
used_images = []
if 'collage_images' in poster_metadata:
used_images = poster_metadata['collage_images']
logger.info(f"海报中已使用 {len(used_images)} 张图像: {', '.join(used_images)}")
# 列出源目录中的所有图像文件
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp')
available_images = [
f for f in os.listdir(source_image_dir)
if os.path.isfile(os.path.join(source_image_dir, f)) and
f.lower().endswith(image_extensions)
]
if not available_images:
logger.error(f"源目录中没有找到图像: {source_image_dir}")
return []
logger.info(f"源目录中找到 {len(available_images)} 张图像")
# 过滤掉已经在海报中使用的图像
available_images = [img for img in available_images if img not in used_images]
if not available_images:
logger.warning("所有图像都已在海报中使用,无法创建额外笔记")
return []
logger.info(f"过滤后可用图像数量: {len(available_images)}")
# 如果可用图像少于请求数量,进行警告但继续处理
if len(available_images) < num_additional_images:
logger.warning(
f"可用图像数量 ({len(available_images)}) 少于请求的笔记数量 ({num_additional_images})"
f"将使用所有可用图像"
)
selected_images = available_images
else:
# 随机选择额外图像
selected_images = random.sample(available_images, num_additional_images)
logger.info(f"已选择 {len(selected_images)} 张图像作为笔记")
# 保存选择的笔记图像
saved_paths = []
for i, image_filename in enumerate(selected_images):
try:
# 加载图像
image_path = os.path.join(source_image_dir, image_filename)
image = Image.open(image_path)
# 生成输出文件名
output_filename = output_filename_template.format(index=i+1)
# 创建元数据
note_metadata = {
"original_image": image_filename,
"note_index": i + 1,
"source_dir": source_image_dir,
"associated_poster": os.path.basename(poster_image_path)
}
# 使用输出处理器保存图像
saved_path = self.output_handler.handle_generated_image(
run_id,
topic_index,
variant_index,
'note', # 图像类型为note
image,
output_filename,
note_metadata
)
saved_paths.append(saved_path)
logger.info(f"已保存笔记图像 {i+1}/{len(selected_images)}: {saved_path}")
except Exception as e:
logger.error(f"处理图像时出错 '{image_filename}': {e}")
return saved_paths
def create_additional_images(
self,
run_id: str,
topic_index: int,
variant_index: int,
poster_metadata_path: str,
source_image_dir: str,
num_additional_images: int = 3,
2025-04-26 15:53:44 +08:00
output_filename_template: str = "additional_{index}.jpg",
variation_strength: str = "medium",
extra_effects: bool = True
2025-04-26 14:53:54 +08:00
) -> List[str]:
"""选择未被海报使用的图像作为额外配图并处理为3:4比例"""
logger.info(f"开始为主题 {topic_index} 变体 {variant_index} 选择额外配图")
2025-04-26 14:53:54 +08:00
# 获取候选图像
candidate_images = self.get_candidate_images(
poster_metadata_path,
source_image_dir,
num_additional_images
)
if not candidate_images:
logger.warning("没有找到合适的候选图像")
return []
2025-04-26 14:53:54 +08:00
# 生成唯一的随机种子
seed_str = f"{run_id}_{topic_index}_{variant_index}"
seed = sum(ord(c) for c in seed_str)
logger.info(f"使用随机种子: {seed},基于: {seed_str}")
# 使用多进程并行处理图像
saved_paths = []
with concurrent.futures.ProcessPoolExecutor(max_workers=min(4, len(candidate_images))) as executor:
# 创建任务
future_to_image = {}
for i, image_filename in enumerate(candidate_images):
image_path = os.path.join(source_image_dir, image_filename)
# 为每个图像创建单独的种子
image_seed = seed + i
future = executor.submit(
self.process_single_image,
run_id,
topic_index,
variant_index,
image_path,
image_filename,
i,
source_image_dir,
output_filename_template.format(index=i+1),
image_seed,
variation_strength,
extra_effects
)
future_to_image[future] = (i, image_filename)
# 收集结果
for future in concurrent.futures.as_completed(future_to_image):
i, image_filename = future_to_image[future]
try:
saved_path = future.result()
if saved_path:
saved_paths.append(saved_path)
logger.info(f"已保存额外配图 {i+1}/{len(candidate_images)}: {saved_path}")
except Exception as e:
logger.error(f"处理图像时出错 '{image_filename}': {e}")
logger.error(traceback.format_exc())
2025-04-26 14:53:54 +08:00
return saved_paths
def get_candidate_images(self, poster_metadata_path, source_image_dir, num_images):
"""获取候选图像列表,排除已用于海报的图像"""
2025-04-26 14:53:54 +08:00
# 检查输入路径是否存在
if not os.path.exists(poster_metadata_path):
logger.error(f"海报元数据不存在: {poster_metadata_path}")
return []
if not os.path.exists(source_image_dir) or not os.path.isdir(source_image_dir):
logger.error(f"源图像目录不存在: {source_image_dir}")
return []
# 从元数据文件中读取已使用的图像信息
try:
with open(poster_metadata_path, 'r', encoding='utf-8') as f:
poster_metadata = json.load(f)
except Exception as e:
logger.error(f"无法读取海报元数据: {e}")
return []
# 获取已经在海报中使用的图像
used_images = []
if 'collage_images' in poster_metadata:
used_images = poster_metadata['collage_images']
logger.info(f"海报中已使用 {len(used_images)} 张图像: {', '.join(used_images)}")
# 列出源目录中的所有图像文件
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp')
available_images = [
f for f in os.listdir(source_image_dir)
if os.path.isfile(os.path.join(source_image_dir, f)) and
f.lower().endswith(image_extensions)
]
if not available_images:
logger.error(f"源目录中没有找到图像: {source_image_dir}")
return []
logger.info(f"源目录中找到 {len(available_images)} 张图像")
# 过滤掉已经在海报中使用的图像
available_images = [img for img in available_images if img not in used_images]
if not available_images:
logger.warning("所有图像都已在海报中使用,无法创建额外配图")
return []
logger.info(f"过滤后可用图像数量: {len(available_images)}")
# 如果可用图像少于请求数量,进行警告但继续处理
if len(available_images) < num_images:
2025-04-26 14:53:54 +08:00
logger.warning(
f"可用图像数量 ({len(available_images)}) 少于请求的配图数量 ({num_images})"
2025-04-26 14:53:54 +08:00
f"将使用所有可用图像"
)
selected_images = available_images
else:
# 随机选择额外图像
random.seed(sum(map(ord, ''.join(available_images)))) # 确保结果一致性
selected_images = random.sample(available_images, num_images)
random.seed() # 重置随机种子
2025-04-26 14:53:54 +08:00
return selected_images
def process_single_image(
self,
run_id,
topic_index,
variant_index,
image_path,
image_filename,
index,
source_dir,
output_filename,
seed,
variation_strength,
extra_effects
):
"""处理单张图像 - 此方法可在独立进程中运行"""
try:
# 加载图像
image = Image.open(image_path)
# 处理图像为3:4比例并添加微小变化
processed_image = self.optimized_process_image(
image,
(3, 4),
add_variation=True,
seed=seed,
variation_strength=variation_strength,
extra_effects=extra_effects
)
# 创建元数据
additional_metadata = {
"original_image": image_filename,
"additional_index": index + 1,
"source_dir": source_dir,
"is_additional_image": True,
"processed": True,
"aspect_ratio": "3:4",
"variation_applied": True,
"variation_strength": variation_strength,
"extra_effects": extra_effects
}
# 使用输出处理器保存图像
return self.output_handler.handle_generated_image(
run_id,
topic_index,
variant_index,
'additional', # 图像类型为additional
processed_image,
output_filename,
additional_metadata
)
except Exception as e:
logger.error(f"处理图像时出错 '{image_filename}': {e}")
logger.error(traceback.format_exc())
return None
2025-05-06 16:34:46 +08:00
def add_dct_noise(self, image: Image.Image, intensity: float = 0.1, block_size: int = 8) -> Image.Image:
"""
在DCT域添加噪声以对抗pHash (需要Scipy) - 强化版
Args:
2025-05-06 16:34:46 +08:00
image: 输入图像 (建议传入灰度图或处理亮度通道)
intensity: 噪声强度 (0-1)
block_size: DCT块大小 (通常为8)
Returns:
2025-05-06 16:34:46 +08:00
添加噪声后的图像
"""
2025-05-06 16:34:46 +08:00
if not SCIPY_AVAILABLE:
logger.warning("Scipy 未安装无法执行DCT噪声注入。请运行 'pip install scipy'")
# 可以选择返回原图,或执行一个简化的备用方案
# 这里我们返回原图
return image
2025-05-06 16:34:46 +08:00
try:
logger.debug(f"应用强化DCT噪声强度: {intensity:.3f}")
2025-05-06 16:34:46 +08:00
# 确保是灰度图或提取亮度通道 (这里以灰度为例)
if image.mode != 'L':
gray_image = image.convert('L')
else:
gray_image = image
2025-05-06 16:34:46 +08:00
img_array = np.array(gray_image, dtype=float)
h, w = img_array.shape
2025-05-06 16:34:46 +08:00
# 确保尺寸是块大小的倍数
h_pad = (block_size - h % block_size) % block_size
w_pad = (block_size - w % block_size) % block_size
if h_pad != 0 or w_pad != 0:
img_array = np.pad(img_array, ((0, h_pad), (0, w_pad)), mode='reflect')
padded_h, padded_w = img_array.shape
else:
padded_h, padded_w = h, w
# 定义目标系数范围 (例如排除DC的左上角4x4低频区域)
target_h, target_w = 4, 4
2025-05-06 16:34:46 +08:00
for y in range(0, padded_h, block_size):
for x in range(0, padded_w, block_size):
block = img_array[y:y+block_size, x:x+block_size]
dct_block = dct(dct(block.T, norm='ortho').T, norm='ortho')
# --- 强化噪声逻辑 ---
# 1. 计算噪声幅度,不再完全依赖系数本身大小
noise_amplitude = intensity * 30 # 固定基础噪声幅度 (可调)
2025-05-06 16:34:46 +08:00
# 2. 生成噪声
noise = np.random.uniform(-noise_amplitude, noise_amplitude,
(min(block_size, target_h), min(block_size, target_w)))
2025-05-06 16:34:46 +08:00
# 3. 应用噪声到目标低频区域 (跳过DC)
noise_h, noise_w = noise.shape
# 确保索引不超过dct_block的实际大小
apply_h, apply_w = min(noise_h, dct_block.shape[0]), min(noise_w, dct_block.shape[1])
2025-05-06 16:34:46 +08:00
# 尝试乘性噪声 - 可能对保留结构更好一点
factor = np.random.uniform(1.0 - intensity * 0.8, 1.0 + intensity * 0.8,
(min(block_size, target_h), min(block_size, target_w)))
dct_block[0:apply_h, 0:apply_w] *= factor[0:apply_h, 0:apply_w]
dct_block[0, 0] /= factor[0, 0] # 恢复DC系数近似值
# --- 结束强化噪声逻辑 ---
idct_block = idct(idct(dct_block.T, norm='ortho').T, norm='ortho')
2025-05-06 16:34:46 +08:00
img_array[y:y+block_size, x:x+block_size] = idct_block
if h_pad != 0 or w_pad != 0:
img_array = img_array[:h, :w]
img_array = np.clip(img_array, 0, 255)
modified_gray = Image.fromarray(img_array.astype(np.uint8))
if image.mode == 'RGB' and gray_image is not image:
blend_factor = 0.35 # 稍微增加混合强度
2025-05-06 16:34:46 +08:00
r, g, b = image.split()
r = Image.blend(r, modified_gray, blend_factor)
g = Image.blend(g, modified_gray, blend_factor)
b = Image.blend(b, modified_gray, blend_factor)
merged_image = Image.merge('RGB', (r, g, b))
2025-05-06 16:34:46 +08:00
else:
merged_image = modified_gray
2025-05-06 16:34:46 +08:00
logger.debug("强化DCT噪声应用成功。")
return merged_image
2025-05-06 16:34:46 +08:00
except Exception as e:
logger.error(f"强化DCT噪声注入出错: {e}")
return image
2025-05-06 16:34:46 +08:00
def add_phash_noise(self, image: Image.Image, intensity: float = 0.05) -> Image.Image:
"""调用强化的 add_dct_noise 方法"""
logger.debug(f"调用强化add_dct_noise对抗pHash强度: {intensity:.3f}")
return self.add_dct_noise(image, intensity=intensity)
def apply_smart_crop_resize(self, image: Image.Image, strength: str = "medium") -> Image.Image:
"""
应用智能裁剪和重缩放来抵抗哈希算法
Args:
image: 输入图像
strength: 处理强度 ('low', 'medium', 'high')
Returns:
处理后的图像
"""
try:
original_width, original_height = image.size
logger.debug(f"应用智能裁剪+重缩放 (强度: {strength}), 原始尺寸: {original_width}x{original_height}")
# 根据强度决定裁剪量 (0-3 像素)
if strength == "low":
max_crop = 1
elif strength == "high":
max_crop = 3
else: # medium
max_crop = 2
# 随机决定每边的裁剪量
crop_left = random.randint(0, max_crop)
crop_top = random.randint(0, max_crop)
crop_right = random.randint(0, max_crop)
crop_bottom = random.randint(0, max_crop)
# 计算裁剪后的边界
left = crop_left
top = crop_top
right = original_width - crop_right
bottom = original_height - crop_bottom
# 确保裁剪后尺寸至少为1x1
if left >= right or top >= bottom:
logger.warning("智能裁剪计算无效,跳过此步骤。")
return image
logger.debug(f" 裁剪参数: L={crop_left}, T={crop_top}, R={crop_right}, B={crop_bottom}")
logger.debug(f" 裁剪区域: ({left}, {top}, {right}, {bottom})")
# 执行裁剪
cropped_image = image.crop((left, top, right, bottom))
# 使用高质量插值将图像缩放回原始尺寸
logger.debug(f" 将裁剪后图像 ({cropped_image.width}x{cropped_image.height}) 缩放回 ({original_width}x{original_height})")
resampling_filter = Image.LANCZOS # 高质量插值
resized_image = cropped_image.resize((original_width, original_height), resample=resampling_filter)
logger.debug("智能裁剪+重缩放应用成功。")
return resized_image
except Exception as e:
logger.error(f"智能裁剪+重缩放时出错: {e}")
return image # 出错时返回原图
def perturb_color_histogram(self, image: Image.Image, strength: float = 0.03) -> Image.Image:
"""
扰动图像的颜色直方图对抗基于颜色统计的图像匹配
Args:
image: 输入图像
strength: 扰动强度(0-1)
2025-05-06 16:34:46 +08:00
Returns:
处理后的图像
"""
logger.debug(f"扰动颜色直方图,强度: {strength:.3f}")
# 确保为RGB模式
if image.mode != 'RGB':
image = image.convert('RGB')
# 转为numpy数组
img_array = np.array(image)
height, width, channels = img_array.shape
# 对每个通道分别处理
for channel in range(channels):
# 计算当前通道的直方图
hist, _ = np.histogram(img_array[:,:,channel].flatten(), bins=64, range=(0, 256))
2025-05-06 16:34:46 +08:00
# 找出主要颜色区间 (频率高的区间)
threshold = np.percentile(hist, 70) # 取前30%的颜色块
significant_bins = np.where(hist > threshold)[0]
2025-05-06 15:49:31 +08:00
if len(significant_bins) > 0:
for bin_idx in significant_bins:
# 计算当前bin对应的颜色范围
bin_width = 256 // 64
color_low = bin_idx * bin_width
color_high = (bin_idx + 1) * bin_width
# 创建颜色范围掩码
mask = (img_array[:,:,channel] >= color_low) & (img_array[:,:,channel] < color_high)
if np.any(mask):
# 生成随机偏移值
offset = int(strength * bin_width * (random.random() - 0.5) * 2)
# 应用偏移确保在0-255范围内
img_array[:,:,channel][mask] = np.clip(
img_array[:,:,channel][mask] + offset, 0, 255).astype(np.uint8)
2025-05-06 16:34:46 +08:00
# 转回PIL图像
logger.debug("颜色直方图扰动成功。")
return Image.fromarray(img_array)
2025-05-06 15:49:31 +08:00
def strip_metadata(self, image: Image.Image) -> Image.Image:
"""
移除图像中的所有元数据 (修复版)
Args:
image: 输入图像
Returns:
无元数据的图像
"""
logger.debug("移除图像元数据...")
try:
# 从当前图像对象的像素数据创建一个新的Image对象
# 这确保我们使用的是内存中修改后的数据
# 保留原始格式信息,如果可用
img_format = image.format if hasattr(image, 'format') else 'PNG'
# 如果图像有alpha通道需要正确处理
if image.mode == 'RGBA':
# 创建一个白色背景然后粘贴带有alpha的图像
background = Image.new("RGB", image.size, (255, 255, 255))
background.paste(image, mask=image.split()[3]) # 3 is the alpha channel
image_to_save = background
img_format = 'JPEG' # 通常去除alpha后存为JPEG
elif image.mode == 'P':
# 带调色板的图像转换为RGB
image_to_save = image.convert('RGB')
img_format = 'JPEG'
else:
image_to_save = image
# 保存到内存缓冲区
data = io.BytesIO()
# 确保保存时指定质量参数,避免默认压缩导致意外变化
if img_format == 'JPEG':
image_to_save.save(data, format='JPEG', quality=95) # 使用高质量JPEG
else:
# 对于PNG等无损格式不需要质量参数
image_to_save.save(data, format=img_format)
data.seek(0) # 重置缓冲区指针
reloaded_image = Image.open(data)
logger.debug("元数据移除成功。")
return reloaded_image
except Exception as e:
logger.error(f"移除元数据时出错: {e}")
return image # 出错时返回原图
2025-05-06 17:11:29 +08:00
def apply_overlay_noise(self, image: Image.Image, alpha: int = 10, noise_type: str = 'uniform') -> Image.Image:
"""
在图像上叠加一个低透明度的噪声图层
Args:
image: 输入图像
alpha: 叠加噪声图层的 Alpha (0-255)
noise_type: 'gaussian' 'uniform'
Returns:
叠加噪声后的图像
"""
try:
logger.debug(f"应用低透明度噪声叠加: alpha={alpha}, type={noise_type}")
# 确保图像是 RGBA 模式以处理透明度
if image.mode != 'RGBA':
base_image = image.convert('RGBA')
else:
base_image = image.copy() # 操作副本
width, height = base_image.size
# 创建噪声图层 (灰度噪声即可)
if noise_type == 'gaussian':
# 生成范围在 0-255 的高斯噪声均值128
noise_array = np.random.normal(loc=128, scale=40, size=(height, width)).clip(0, 255).astype(np.uint8)
else: # uniform
noise_array = np.random.randint(0, 256, size=(height, width), dtype=np.uint8)
noise_image = Image.fromarray(noise_array, mode='L')
# 将噪声灰度图转换为 RGBA并设置 alpha 通道
noise_rgba = noise_image.convert('RGBA')
# 创建一个全为指定 alpha 值的通道
alpha_channel = Image.new('L', noise_image.size, alpha)
noise_rgba.putalpha(alpha_channel)
# 使用 alpha_composite 进行混合叠加
# alpha_composite 要求两个输入都是 RGBA
combined_image = Image.alpha_composite(base_image, noise_rgba)
# 通常我们希望最终结果是 RGB所以转换回去
# 如果原图就是 RGBA 且需要保留透明度,则省略此步
final_image = combined_image.convert('RGB')
logger.debug("低透明度噪声叠加应用成功。")
return final_image
except Exception as e:
logger.error(f"应用叠加噪声时出错: {e}")
logger.error(traceback.format_exc()) # 打印详细错误
return image # 出错时返回原图
def optimize_anti_hash_methods(self, image: Image.Image, strength: str = "medium") -> Image.Image:
"""优化后的哈希对抗方法,策略: 裁剪缩放 + DCT噪声 + 叠加噪声"""
logger.info(f"--- 开始优化抗哈希方法 (强度: {strength}) - 叠加噪声策略 ---")
original_image_for_logging = image.copy()
# --- 参数定义 ---
if strength == "low":
phash_intensity = 0.06 # 轻微DCT噪声
color_hist_strength = 0.02 # 轻微颜色扰动
apply_crop_resize = True # 应用裁剪缩放
noise_alpha = random.randint(5, 8) # 低透明度噪声
elif strength == "high":
phash_intensity = 0.20 # 较强DCT噪声
color_hist_strength = 0.06 # 较强颜色扰动
apply_crop_resize = True # 应用裁剪缩放
noise_alpha = random.randint(12, 18) # 较高透明度噪声
else: # medium
phash_intensity = 0.12 # 中等DCT噪声
color_hist_strength = 0.04 # 中等颜色扰动
apply_crop_resize = True # 应用裁剪缩放
noise_alpha = random.randint(8, 12) # 中等透明度噪声
logger.debug(f"参数: pHash强度={phash_intensity:.2f}, 颜色强度={color_hist_strength:.2f}, 应用裁剪缩放={apply_crop_resize}, 噪声Alpha={noise_alpha}")
processed_image = image # 从原图开始
# 1. 智能裁剪 + 重缩放 (策略C)
if apply_crop_resize:
processed_image = self.apply_smart_crop_resize(processed_image, strength)
# 2. 强化的pHash对抗方法 (策略A)
logger.debug(f"应用 pHash 对抗 (强化DCT噪声), 强度={phash_intensity:.2f}")
processed_image = self.add_phash_noise(processed_image, intensity=phash_intensity)
# 3. 保留轻微的颜色直方图扰动
if color_hist_strength > 0:
logger.debug(f"应用颜色直方图扰动, 强度={color_hist_strength:.3f}")
processed_image = self.perturb_color_histogram(processed_image, strength=color_hist_strength)
# 4. 应用低透明度噪声叠加 (新策略核心)
if noise_alpha > 0:
processed_image = self.apply_overlay_noise(processed_image, alpha=noise_alpha, noise_type='uniform') # 先用 uniform 试试
# 内部已有日志
# --- 移除之前的 aHash块, dHash线, 区域变换, 高斯噪声等 ---
logger.debug("已移除 aHash/dHash特定对抗、区域变换、高斯噪声等。")
# 对比修改前后
try:
diff = ImageChops.difference(original_image_for_logging.convert('RGB'), processed_image.convert('RGB')).getbbox() # 确保模式一致
if diff:
logger.info(f"图像已修改。差异区域: {diff}")
else:
logger.warning("!!!优化方法似乎未修改图像!!!")
except ValueError:
logger.warning("无法比较图像差异:模式可能不同或错误。")
except Exception as log_e:
logger.warning(f"无法比较图像差异: {log_e}")
logger.info(f"--- 完成优化抗哈希方法 (强度: {strength}) - 叠加噪声策略 ---")
return processed_image
def optimized_process_image(
2025-04-26 15:53:44 +08:00
self,
image: Image.Image,
target_ratio: Tuple[int, int],
add_variation: bool = True,
seed: int = None,
variation_strength: str = "medium",
extra_effects: bool = True
2025-04-26 15:53:44 +08:00
) -> Image.Image:
"""优化后的图像处理方法,使用更高效的算法,添加反查重技术"""
# 设置随机种子
2025-04-26 15:53:44 +08:00
if seed is not None:
random.seed(seed)
np.random.seed(seed)
2025-04-26 15:53:44 +08:00
# 根据微调强度设置参数
2025-04-26 15:53:44 +08:00
if variation_strength == "low":
brightness_factor = random.uniform(0.97, 1.03)
contrast_factor = random.uniform(0.97, 1.03)
saturation_factor = random.uniform(0.97, 1.03)
2025-04-26 15:53:44 +08:00
max_rotation = 0.5
border_size = random.randint(0, 1)
use_extra = random.random() < 0.3 and extra_effects
2025-04-26 15:53:44 +08:00
elif variation_strength == "high":
brightness_factor = random.uniform(0.92, 1.08)
contrast_factor = random.uniform(0.92, 1.08)
saturation_factor = random.uniform(0.92, 1.08)
2025-04-26 15:53:44 +08:00
max_rotation = 2.0
border_size = random.randint(0, 3)
use_extra = extra_effects
else: # medium
brightness_factor = random.uniform(0.95, 1.05)
contrast_factor = random.uniform(0.95, 1.05)
saturation_factor = random.uniform(0.95, 1.05)
2025-04-26 15:53:44 +08:00
max_rotation = 1.0
border_size = random.randint(0, 2)
use_extra = random.random() < 0.7 and extra_effects
2025-04-26 15:53:44 +08:00
# 调整图像为目标比例
2025-04-26 15:53:44 +08:00
width, height = image.size
current_ratio = width / height
target_ratio_value = target_ratio[0] / target_ratio[1]
# 调整大小
2025-04-26 15:53:44 +08:00
if current_ratio > target_ratio_value: # 图片较宽
new_height = 1200
2025-04-26 15:53:44 +08:00
new_width = int(new_height * current_ratio)
else: # 图片较高
new_width = 900
2025-04-26 15:53:44 +08:00
new_height = int(new_width / current_ratio)
# 高效调整尺寸
2025-04-26 15:53:44 +08:00
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# 裁剪为目标比例
2025-04-26 15:53:44 +08:00
resized_width, resized_height = resized_image.size
if resized_width / resized_height > target_ratio_value:
2025-04-26 15:53:44 +08:00
crop_width = int(resized_height * target_ratio_value)
max_offset = max(1, min(10, (resized_width - crop_width) // 10))
offset = random.randint(-max_offset, max_offset) if add_variation else 0
crop_x1 = max(0, min((resized_width - crop_width) // 2 + offset, resized_width - crop_width))
2025-04-26 15:53:44 +08:00
crop_x2 = crop_x1 + crop_width
result = resized_image.crop((crop_x1, 0, crop_x2, resized_height))
else:
2025-04-26 15:53:44 +08:00
crop_height = int(resized_width / target_ratio_value)
max_offset = max(1, min(10, (resized_height - crop_height) // 10))
offset = random.randint(-max_offset, max_offset) if add_variation else 0
crop_y1 = max(0, min((resized_height - crop_height) // 2 + offset, resized_height - crop_height))
2025-04-26 15:53:44 +08:00
crop_y2 = crop_y1 + crop_height
result = resized_image.crop((0, crop_y1, resized_width, crop_y2))
# 如果不需要变化或是低强度且禁用额外效果
if not add_variation:
logger.info("add_variation=False跳过所有变化和抗哈希处理。")
# 重置随机种子
2025-04-26 15:53:44 +08:00
if seed is not None:
random.seed()
np.random.seed()
# 清除元数据后返回
return self.strip_metadata(result)
2025-04-26 15:53:44 +08:00
logger.info(f"应用基础变化和抗哈希处理 (强度: {variation_strength}, 额外效果: {use_extra})")
processed_image = result.convert('RGB')
2025-04-26 15:53:44 +08:00
# 1. 亮度调整
if abs(brightness_factor - 1.0) > 0.01:
enhancer = ImageEnhance.Brightness(processed_image)
processed_image = enhancer.enhance(brightness_factor)
2025-04-26 15:53:44 +08:00
# 2. 对比度调整
if abs(contrast_factor - 1.0) > 0.01:
enhancer = ImageEnhance.Contrast(processed_image)
processed_image = enhancer.enhance(contrast_factor)
# 3. 饱和度调整
if abs(saturation_factor - 1.0) > 0.01:
enhancer = ImageEnhance.Color(processed_image)
processed_image = enhancer.enhance(saturation_factor)
# 4. 旋转 (只在中高强度时应用)
if variation_strength != "low" and abs(max_rotation) > 0.1:
rotation_angle = random.uniform(-max_rotation, max_rotation)
if abs(rotation_angle) > 0.1: # 只有当角度足够大时才旋转
processed_image = processed_image.rotate(rotation_angle, resample=Image.BICUBIC, expand=False)
# 5. 应用抗哈希技术
if use_extra:
logger.debug("调用 optimize_anti_hash_methods...")
2025-05-06 15:49:31 +08:00
processed_image = self.optimize_anti_hash_methods(processed_image, variation_strength)
else:
logger.info("use_extra=False跳过 optimize_anti_hash_methods。")
# 应用模糊/锐化/边框等额外效果 (如果 use_extra 为 True)
if use_extra:
logger.debug("应用额外效果 (模糊/锐化/边框)...")
# 根据强度决定是否应用特定效果
apply_sharpen = random.random() < 0.4
apply_blur = not apply_sharpen and random.random() < 0.3
2025-04-26 15:53:44 +08:00
# 锐化
if apply_sharpen:
enhancer = ImageEnhance.Sharpness(processed_image)
sharpness = 1.2 if variation_strength == "high" else 1.1
processed_image = enhancer.enhance(sharpness)
2025-04-26 15:53:44 +08:00
# 模糊
elif apply_blur:
radius = 0.7 if variation_strength == "high" else 0.4
processed_image = processed_image.filter(ImageFilter.GaussianBlur(radius=radius))
2025-04-26 15:53:44 +08:00
# 边框处理 (在图像不太小的情况下)
if border_size > 0 and min(processed_image.size) > 300:
border_color = (
random.randint(0, 5),
random.randint(0, 5),
random.randint(0, 5)
)
w, h = processed_image.size
bordered = Image.new('RGB', (w + border_size*2, h + border_size*2), border_color)
bordered.paste(processed_image, (border_size, border_size))
logger.debug("额外效果应用完成。")
else:
logger.info("use_extra=False跳过额外效果。")
# **关键:确保在所有修改之后调用修复后的 strip_metadata**
logger.debug("最后调用 strip_metadata 清除元数据。")
final_image = self.strip_metadata(processed_image)
# 重置随机种子
if seed is not None:
random.seed()
np.random.seed()
logger.debug("随机种子已重置。")
logger.info(f"图像处理完成 (强度: {variation_strength})")
return final_image
2025-04-26 14:53:54 +08:00
def process_poster_for_notes(
run_id: str,
topic_index: int,
variant_index: int,
poster_image_path: str,
poster_metadata_path: str,
source_image_dir: str,
num_additional_images: int,
output_handler: OutputHandler,
output_filename_template: str = "note_{index}.jpg"
) -> List[str]:
"""
处理海报并创建笔记图像
Args:
run_id: 运行ID
topic_index: 主题索引
variant_index: 变体索引
poster_image_path: 海报图像路径
poster_metadata_path: 海报元数据路径
source_image_dir: 源图像目录
num_additional_images: 要使用的额外图像数量
output_handler: 输出处理器
output_filename_template: 输出文件名模板
Returns:
List[str]: 保存的笔记图像路径列表
"""
logger.info(f"开始为海报创建笔记图像: {poster_image_path}")
# 验证输入
if not os.path.exists(poster_image_path):
logger.error(f"海报图像不存在: {poster_image_path}")
return []
# 创建处理器实例并处理
creator = PosterNotesCreator(output_handler)
return creator.create_notes_images(
run_id,
topic_index,
variant_index,
poster_image_path,
poster_metadata_path,
source_image_dir,
num_additional_images,
output_filename_template
)
def select_additional_images(
run_id: str,
topic_index: int,
variant_index: int,
poster_metadata_path: str,
source_image_dir: str,
num_additional_images: int,
output_handler: OutputHandler,
2025-04-26 15:53:44 +08:00
output_filename_template: str = "additional_{index}.jpg",
variation_strength: str = "medium",
extra_effects: bool = True
2025-04-26 14:53:54 +08:00
) -> List[str]:
"""
2025-04-26 15:53:44 +08:00
选择未被海报使用的图像作为额外配图并处理为3:4比例
2025-04-26 14:53:54 +08:00
"""
logger.info(f"开始为主题 {topic_index} 变体 {variant_index} 选择额外配图")
# 验证输入
if not os.path.exists(poster_metadata_path):
logger.error(f"海报元数据不存在: {poster_metadata_path}")
return []
# 创建处理器实例
2025-04-26 14:53:54 +08:00
creator = PosterNotesCreator(output_handler)
# 使用优化后的方法处理图像
2025-04-26 14:53:54 +08:00
return creator.create_additional_images(
run_id,
topic_index,
variant_index,
poster_metadata_path,
source_image_dir,
num_additional_images,
2025-04-26 15:53:44 +08:00
output_filename_template,
variation_strength,
extra_effects
2025-04-26 14:53:54 +08:00
)