2025-04-26 14:53:54 +08:00
|
|
|
|
import os
|
|
|
|
|
|
import random
|
|
|
|
|
|
import logging
|
|
|
|
|
|
import json
|
2025-05-06 17:11:29 +08:00
|
|
|
|
from PIL import Image, ImageChops
|
2025-04-26 14:53:54 +08:00
|
|
|
|
import traceback
|
|
|
|
|
|
from typing import List, Tuple, Dict, Any, Optional
|
2025-05-06 15:03:03 +08:00
|
|
|
|
import concurrent.futures
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
from PIL import ImageEnhance, ImageFilter
|
2025-04-26 14:53:54 +08:00
|
|
|
|
from .output_handler import OutputHandler
|
2025-05-06 15:19:37 +08:00
|
|
|
|
import io
|
2025-05-08 14:22:30 +08:00
|
|
|
|
import math
|
2025-05-09 15:40:41 +08:00
|
|
|
|
from core.simple_collage import process_directory as process_collage
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 尝试导入 scipy,如果失败则标记
|
|
|
|
|
|
try:
|
|
|
|
|
|
from scipy.fftpack import dct, idct
|
|
|
|
|
|
SCIPY_AVAILABLE = True
|
|
|
|
|
|
except ImportError:
|
|
|
|
|
|
SCIPY_AVAILABLE = False
|
|
|
|
|
|
dct = None
|
|
|
|
|
|
idct = None
|
|
|
|
|
|
|
2025-04-26 14:53:54 +08:00
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class PosterNotesCreator:
|
|
|
|
|
|
"""
|
|
|
|
|
|
处理原始海报作为主图,并随机选择额外的图片作为笔记图片。
|
|
|
|
|
|
确保选择的笔记图片与海报中使用的图片不重复。
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, output_handler: OutputHandler):
|
|
|
|
|
|
"""
|
|
|
|
|
|
初始化 PosterNotesCreator
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
output_handler: 可选的 OutputHandler 实例,用于处理输出
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.output_handler = output_handler
|
|
|
|
|
|
logging.info("PosterNotesCreator 初始化完成")
|
|
|
|
|
|
|
|
|
|
|
|
def create_notes_images(
|
|
|
|
|
|
self,
|
|
|
|
|
|
run_id: str,
|
|
|
|
|
|
topic_index: int,
|
|
|
|
|
|
variant_index: int,
|
|
|
|
|
|
poster_image_path: str,
|
|
|
|
|
|
poster_metadata_path: str,
|
|
|
|
|
|
source_image_dir: str,
|
|
|
|
|
|
num_additional_images: int,
|
|
|
|
|
|
output_filename_template: str = "note_{index}.jpg"
|
|
|
|
|
|
) -> List[str]:
|
|
|
|
|
|
"""
|
|
|
|
|
|
创建笔记图像
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
run_id: 运行ID
|
|
|
|
|
|
topic_index: 主题索引
|
|
|
|
|
|
variant_index: 变体索引
|
|
|
|
|
|
poster_image_path: 海报图像路径
|
|
|
|
|
|
poster_metadata_path: 海报元数据路径
|
|
|
|
|
|
source_image_dir: 源图像目录
|
|
|
|
|
|
num_additional_images: 要使用的额外图像数量
|
|
|
|
|
|
output_filename_template: 输出文件名模板
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
List[str]: 保存的笔记图像路径列表
|
|
|
|
|
|
"""
|
|
|
|
|
|
# 检查输入路径是否存在
|
|
|
|
|
|
if not os.path.exists(poster_image_path):
|
|
|
|
|
|
logger.error(f"海报图像不存在: {poster_image_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.exists(poster_metadata_path):
|
|
|
|
|
|
logger.error(f"海报元数据不存在: {poster_metadata_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.exists(source_image_dir) or not os.path.isdir(source_image_dir):
|
|
|
|
|
|
logger.error(f"源图像目录不存在: {source_image_dir}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 从元数据文件中读取已使用的图像信息
|
|
|
|
|
|
try:
|
|
|
|
|
|
with open(poster_metadata_path, 'r', encoding='utf-8') as f:
|
|
|
|
|
|
poster_metadata = json.load(f)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"无法读取海报元数据: {e}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 获取已经在海报中使用的图像
|
|
|
|
|
|
used_images = []
|
|
|
|
|
|
if 'collage_images' in poster_metadata:
|
|
|
|
|
|
used_images = poster_metadata['collage_images']
|
|
|
|
|
|
logger.info(f"海报中已使用 {len(used_images)} 张图像: {', '.join(used_images)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 列出源目录中的所有图像文件
|
|
|
|
|
|
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp')
|
|
|
|
|
|
available_images = [
|
|
|
|
|
|
f for f in os.listdir(source_image_dir)
|
|
|
|
|
|
if os.path.isfile(os.path.join(source_image_dir, f)) and
|
|
|
|
|
|
f.lower().endswith(image_extensions)
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
if not available_images:
|
|
|
|
|
|
logger.error(f"源目录中没有找到图像: {source_image_dir}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"源目录中找到 {len(available_images)} 张图像")
|
|
|
|
|
|
|
|
|
|
|
|
# 过滤掉已经在海报中使用的图像
|
|
|
|
|
|
available_images = [img for img in available_images if img not in used_images]
|
|
|
|
|
|
|
|
|
|
|
|
if not available_images:
|
|
|
|
|
|
logger.warning("所有图像都已在海报中使用,无法创建额外笔记")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"过滤后可用图像数量: {len(available_images)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 如果可用图像少于请求数量,进行警告但继续处理
|
|
|
|
|
|
if len(available_images) < num_additional_images:
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"可用图像数量 ({len(available_images)}) 少于请求的笔记数量 ({num_additional_images}),"
|
|
|
|
|
|
f"将使用所有可用图像"
|
|
|
|
|
|
)
|
|
|
|
|
|
selected_images = available_images
|
|
|
|
|
|
else:
|
|
|
|
|
|
# 随机选择额外图像
|
|
|
|
|
|
selected_images = random.sample(available_images, num_additional_images)
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"已选择 {len(selected_images)} 张图像作为笔记")
|
|
|
|
|
|
|
|
|
|
|
|
# 保存选择的笔记图像
|
|
|
|
|
|
saved_paths = []
|
|
|
|
|
|
for i, image_filename in enumerate(selected_images):
|
|
|
|
|
|
try:
|
|
|
|
|
|
# 加载图像
|
|
|
|
|
|
image_path = os.path.join(source_image_dir, image_filename)
|
|
|
|
|
|
image = Image.open(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
# 生成输出文件名
|
|
|
|
|
|
output_filename = output_filename_template.format(index=i+1)
|
|
|
|
|
|
|
|
|
|
|
|
# 创建元数据
|
|
|
|
|
|
note_metadata = {
|
|
|
|
|
|
"original_image": image_filename,
|
|
|
|
|
|
"note_index": i + 1,
|
|
|
|
|
|
"source_dir": source_image_dir,
|
|
|
|
|
|
"associated_poster": os.path.basename(poster_image_path)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# 使用输出处理器保存图像
|
|
|
|
|
|
saved_path = self.output_handler.handle_generated_image(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
'note', # 图像类型为note
|
|
|
|
|
|
image,
|
|
|
|
|
|
output_filename,
|
|
|
|
|
|
note_metadata
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
saved_paths.append(saved_path)
|
|
|
|
|
|
logger.info(f"已保存笔记图像 {i+1}/{len(selected_images)}: {saved_path}")
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"处理图像时出错 '{image_filename}': {e}")
|
|
|
|
|
|
|
|
|
|
|
|
return saved_paths
|
|
|
|
|
|
|
|
|
|
|
|
def create_additional_images(
|
|
|
|
|
|
self,
|
|
|
|
|
|
run_id: str,
|
|
|
|
|
|
topic_index: int,
|
|
|
|
|
|
variant_index: int,
|
|
|
|
|
|
poster_metadata_path: str,
|
|
|
|
|
|
source_image_dir: str,
|
|
|
|
|
|
num_additional_images: int = 3,
|
2025-04-26 15:53:44 +08:00
|
|
|
|
output_filename_template: str = "additional_{index}.jpg",
|
|
|
|
|
|
variation_strength: str = "medium",
|
2025-05-09 14:00:46 +08:00
|
|
|
|
extra_effects: bool = True,
|
2025-05-09 16:03:23 +08:00
|
|
|
|
collage_style: str = "grid_2x2" # 默认使用grid模式
|
2025-04-26 14:53:54 +08:00
|
|
|
|
) -> List[str]:
|
2025-05-09 14:00:46 +08:00
|
|
|
|
"""
|
2025-05-09 16:03:23 +08:00
|
|
|
|
选择未被海报使用的图像作为额外配图,使用2x2网格拼接多张图片
|
2025-05-09 14:00:46 +08:00
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
run_id: 运行ID
|
|
|
|
|
|
topic_index: 主题索引
|
|
|
|
|
|
variant_index: 变体索引
|
|
|
|
|
|
poster_metadata_path: 海报元数据路径
|
|
|
|
|
|
source_image_dir: 源图像目录
|
2025-05-09 16:03:23 +08:00
|
|
|
|
num_additional_images: 要输出的额外配图数量,默认为3
|
2025-05-09 14:00:46 +08:00
|
|
|
|
output_filename_template: 输出文件名模板
|
|
|
|
|
|
variation_strength: 变化强度,可以是 'low', 'medium', 'high'
|
|
|
|
|
|
extra_effects: 是否应用额外效果
|
2025-05-09 16:03:23 +08:00
|
|
|
|
collage_style: 拼图风格,固定为 'grid'
|
2025-05-09 14:00:46 +08:00
|
|
|
|
|
|
|
|
|
|
Returns:
|
2025-05-09 15:40:41 +08:00
|
|
|
|
List[str]: 保存的图像路径列表
|
2025-05-09 14:00:46 +08:00
|
|
|
|
"""
|
2025-05-06 15:03:03 +08:00
|
|
|
|
logger.info(f"开始为主题 {topic_index} 变体 {variant_index} 选择额外配图")
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-09 16:03:23 +08:00
|
|
|
|
# 获取候选图像 - 我们需要至少4*num_additional_images张图片
|
2025-05-16 17:29:20 +08:00
|
|
|
|
# num_source_images_needed = min(4 * num_additional_images, 12) # 限制最多12张源图 <-- 旧逻辑
|
|
|
|
|
|
total_images_needed = 4 * num_additional_images # 计算总共需要的唯一图片数量
|
2025-05-09 16:03:23 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
candidate_images = self.get_candidate_images(
|
|
|
|
|
|
poster_metadata_path,
|
|
|
|
|
|
source_image_dir,
|
2025-05-16 17:29:20 +08:00
|
|
|
|
# num_source_images_needed <-- 旧逻辑
|
|
|
|
|
|
total_images_needed # 请求总共需要的图片数量
|
2025-05-06 15:03:03 +08:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if not candidate_images:
|
|
|
|
|
|
logger.warning("没有找到合适的候选图像")
|
|
|
|
|
|
return []
|
2025-05-16 17:29:20 +08:00
|
|
|
|
|
|
|
|
|
|
# 检查是否有足够的图片来生成请求数量的配图
|
|
|
|
|
|
if len(candidate_images) < total_images_needed:
|
|
|
|
|
|
adjusted_num_images = len(candidate_images) // 4
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"可用图像数量 ({len(candidate_images)}) 不足以生成 {num_additional_images} 张不重复的2x2配图 "
|
|
|
|
|
|
f"(需要 {total_images_needed} 张)。将只生成 {adjusted_num_images} 张配图。"
|
|
|
|
|
|
)
|
|
|
|
|
|
num_additional_images = adjusted_num_images
|
|
|
|
|
|
if num_additional_images == 0:
|
|
|
|
|
|
logger.warning("可用图像数量少于4张,无法创建任何2x2拼图。")
|
|
|
|
|
|
return []
|
|
|
|
|
|
elif len(candidate_images) < 4: # 即使调整后,检查是否仍少于4张
|
2025-05-09 16:03:23 +08:00
|
|
|
|
logger.warning(f"可用图像数量({len(candidate_images)})少于4张,无法创建2x2拼图")
|
|
|
|
|
|
return []
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 生成唯一的随机种子
|
|
|
|
|
|
seed_str = f"{run_id}_{topic_index}_{variant_index}"
|
|
|
|
|
|
seed = sum(ord(c) for c in seed_str)
|
2025-05-09 16:03:23 +08:00
|
|
|
|
random.seed(seed)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
logger.info(f"使用随机种子: {seed},基于: {seed_str}")
|
|
|
|
|
|
|
2025-05-09 16:03:23 +08:00
|
|
|
|
# 打乱候选图像顺序
|
|
|
|
|
|
random.shuffle(candidate_images)
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 使用多进程并行处理图像
|
|
|
|
|
|
saved_paths = []
|
2025-05-09 16:03:23 +08:00
|
|
|
|
with concurrent.futures.ProcessPoolExecutor(max_workers=min(4, num_additional_images)) as executor:
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 创建任务
|
2025-05-09 16:03:23 +08:00
|
|
|
|
future_to_image_set = {}
|
2025-05-16 17:29:20 +08:00
|
|
|
|
start_index = 0 # 用于追踪从candidate_images中取图的起始位置
|
2025-05-09 16:03:23 +08:00
|
|
|
|
|
|
|
|
|
|
for i in range(num_additional_images):
|
2025-05-16 17:29:20 +08:00
|
|
|
|
# # 为每个输出选择4张不同的图片 <-- 旧逻辑,改为切片
|
|
|
|
|
|
# selected_indices = []
|
|
|
|
|
|
# # 确保我们有足够的图片可选择
|
|
|
|
|
|
# available_indices = list(range(len(candidate_images)))
|
2025-05-09 16:03:23 +08:00
|
|
|
|
|
2025-05-16 17:29:20 +08:00
|
|
|
|
# # 如果图片不够,我们可能需要重复使用一些图片
|
|
|
|
|
|
# if len(available_indices) < 4:
|
|
|
|
|
|
# selected_indices = available_indices * (4 // len(available_indices) + 1)
|
|
|
|
|
|
# selected_indices = selected_indices[:4]
|
|
|
|
|
|
# else:
|
|
|
|
|
|
# # 随机选择4个不同的索引
|
|
|
|
|
|
# selected_indices = random.sample(available_indices, 4)
|
2025-05-09 16:03:23 +08:00
|
|
|
|
|
2025-05-16 17:29:20 +08:00
|
|
|
|
# # 获取对应的图片文件名
|
|
|
|
|
|
# selected_images = [candidate_images[idx] for idx in selected_indices]
|
|
|
|
|
|
|
|
|
|
|
|
# --- 新逻辑:从打乱后的列表中顺序切片获取不重复的图像 ---
|
|
|
|
|
|
end_index = start_index + 4
|
|
|
|
|
|
if end_index > len(candidate_images): # 双重检查,理论上不应发生
|
|
|
|
|
|
logger.error(f"内部错误:尝试获取的图像索引超出范围 ({start_index}-{end_index}),可用图像: {len(candidate_images)}")
|
|
|
|
|
|
break
|
2025-05-09 16:03:23 +08:00
|
|
|
|
|
2025-05-16 17:29:20 +08:00
|
|
|
|
selected_images = candidate_images[start_index:end_index]
|
|
|
|
|
|
start_index = end_index # 更新下一个起始索引
|
|
|
|
|
|
# --- 结束新逻辑 ---
|
|
|
|
|
|
|
2025-05-09 16:03:23 +08:00
|
|
|
|
# 为每个拼图创建单独的种子
|
2025-05-06 15:03:03 +08:00
|
|
|
|
image_seed = seed + i
|
|
|
|
|
|
|
|
|
|
|
|
future = executor.submit(
|
2025-05-09 16:03:23 +08:00
|
|
|
|
self.process_multiple_images,
|
2025-05-06 15:03:03 +08:00
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
source_image_dir,
|
2025-05-09 16:03:23 +08:00
|
|
|
|
selected_images,
|
|
|
|
|
|
i,
|
2025-05-06 15:03:03 +08:00
|
|
|
|
output_filename_template.format(index=i+1),
|
|
|
|
|
|
image_seed,
|
|
|
|
|
|
variation_strength,
|
2025-05-09 14:00:46 +08:00
|
|
|
|
extra_effects,
|
|
|
|
|
|
collage_style
|
2025-05-06 15:03:03 +08:00
|
|
|
|
)
|
2025-05-09 16:03:23 +08:00
|
|
|
|
future_to_image_set[future] = (i, selected_images)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
|
|
|
|
|
|
# 收集结果
|
2025-05-09 16:03:23 +08:00
|
|
|
|
for future in concurrent.futures.as_completed(future_to_image_set):
|
|
|
|
|
|
i, selected_images = future_to_image_set[future]
|
2025-05-06 15:03:03 +08:00
|
|
|
|
try:
|
|
|
|
|
|
saved_path = future.result()
|
|
|
|
|
|
if saved_path:
|
|
|
|
|
|
saved_paths.append(saved_path)
|
2025-05-09 16:03:23 +08:00
|
|
|
|
logger.info(f"已保存额外配图 {i+1}/{num_additional_images}: {saved_path}")
|
2025-05-06 15:03:03 +08:00
|
|
|
|
except Exception as e:
|
2025-05-09 16:03:23 +08:00
|
|
|
|
logger.error(f"处理图像时出错 '{', '.join(selected_images)}': {e}")
|
2025-05-06 15:03:03 +08:00
|
|
|
|
logger.error(traceback.format_exc())
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-09 16:03:23 +08:00
|
|
|
|
# 重置随机种子
|
|
|
|
|
|
random.seed()
|
2025-05-06 15:03:03 +08:00
|
|
|
|
return saved_paths
|
|
|
|
|
|
|
2025-05-09 16:03:23 +08:00
|
|
|
|
def process_multiple_images(
|
|
|
|
|
|
self,
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
source_dir,
|
|
|
|
|
|
image_filenames,
|
|
|
|
|
|
index,
|
|
|
|
|
|
output_filename,
|
|
|
|
|
|
seed,
|
|
|
|
|
|
variation_strength,
|
|
|
|
|
|
extra_effects,
|
|
|
|
|
|
collage_style="grid_2x2"
|
|
|
|
|
|
):
|
|
|
|
|
|
"""处理多张图像,创建2x2网格拼图"""
|
|
|
|
|
|
try:
|
|
|
|
|
|
# 使用core.simple_collage模块处理图像
|
|
|
|
|
|
style = "grid_2x2" # 固定使用grid风格
|
|
|
|
|
|
|
|
|
|
|
|
# 创建临时目录来存放图像,以便传递给process_collage函数
|
|
|
|
|
|
import tempfile
|
|
|
|
|
|
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
|
|
|
# 复制选中的图像到临时目录
|
|
|
|
|
|
temp_image_paths = []
|
|
|
|
|
|
for img_filename in image_filenames:
|
|
|
|
|
|
src_path = os.path.join(source_dir, img_filename)
|
|
|
|
|
|
dst_path = os.path.join(temp_dir, img_filename)
|
|
|
|
|
|
shutil.copy2(src_path, dst_path)
|
|
|
|
|
|
temp_image_paths.append(dst_path)
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"为网格拼图准备了 {len(temp_image_paths)} 张图像: {', '.join(image_filenames)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 设置随机种子以确保结果一致性
|
|
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed(seed)
|
|
|
|
|
|
np.random.seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
# 调用core.simple_collage模块处理图像
|
|
|
|
|
|
target_size = (900, 1200) # 3:4比例
|
|
|
|
|
|
collage_images, used_image_filenames = process_collage(
|
|
|
|
|
|
temp_dir,
|
|
|
|
|
|
style=style,
|
|
|
|
|
|
target_size=target_size,
|
|
|
|
|
|
output_count=1,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 重置随机种子
|
|
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed()
|
|
|
|
|
|
np.random.seed()
|
|
|
|
|
|
|
|
|
|
|
|
if not collage_images or len(collage_images) == 0:
|
|
|
|
|
|
logger.error(f"拼图模块没有生成有效的图像")
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
processed_image = collage_images[0]
|
|
|
|
|
|
|
|
|
|
|
|
# 确保图像是RGB模式,解决"cannot write mode RGBA as JPEG"错误
|
|
|
|
|
|
if processed_image.mode == 'RGBA':
|
|
|
|
|
|
logger.debug(f"将RGBA图像转换为RGB模式")
|
|
|
|
|
|
# 创建白色背景并粘贴RGBA图像
|
|
|
|
|
|
background = Image.new('RGB', processed_image.size, (255, 255, 255))
|
|
|
|
|
|
background.paste(processed_image, mask=processed_image.split()[3]) # 使用alpha通道作为mask
|
|
|
|
|
|
processed_image = background
|
|
|
|
|
|
elif processed_image.mode != 'RGB':
|
|
|
|
|
|
logger.debug(f"将{processed_image.mode}图像转换为RGB模式")
|
|
|
|
|
|
processed_image = processed_image.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
# 创建元数据
|
|
|
|
|
|
additional_metadata = {
|
|
|
|
|
|
"original_images": image_filenames,
|
|
|
|
|
|
"additional_index": index + 1,
|
|
|
|
|
|
"source_dir": source_dir,
|
|
|
|
|
|
"is_additional_image": True,
|
|
|
|
|
|
"processed": True,
|
|
|
|
|
|
"aspect_ratio": "3:4",
|
|
|
|
|
|
"collage_style": style,
|
|
|
|
|
|
"grid_size": "2x2"
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# 使用输出处理器保存图像
|
|
|
|
|
|
return self.output_handler.handle_generated_image(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
'additional', # 图像类型为additional
|
|
|
|
|
|
processed_image,
|
|
|
|
|
|
output_filename,
|
|
|
|
|
|
additional_metadata
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"处理多张图像时出错: {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
def get_candidate_images(self, poster_metadata_path, source_image_dir, num_images):
|
|
|
|
|
|
"""获取候选图像列表,排除已用于海报的图像"""
|
2025-04-26 14:53:54 +08:00
|
|
|
|
# 检查输入路径是否存在
|
|
|
|
|
|
if not os.path.exists(poster_metadata_path):
|
|
|
|
|
|
logger.error(f"海报元数据不存在: {poster_metadata_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.exists(source_image_dir) or not os.path.isdir(source_image_dir):
|
|
|
|
|
|
logger.error(f"源图像目录不存在: {source_image_dir}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 从元数据文件中读取已使用的图像信息
|
|
|
|
|
|
try:
|
|
|
|
|
|
with open(poster_metadata_path, 'r', encoding='utf-8') as f:
|
|
|
|
|
|
poster_metadata = json.load(f)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"无法读取海报元数据: {e}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 获取已经在海报中使用的图像
|
|
|
|
|
|
used_images = []
|
|
|
|
|
|
if 'collage_images' in poster_metadata:
|
|
|
|
|
|
used_images = poster_metadata['collage_images']
|
|
|
|
|
|
logger.info(f"海报中已使用 {len(used_images)} 张图像: {', '.join(used_images)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 列出源目录中的所有图像文件
|
|
|
|
|
|
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp')
|
|
|
|
|
|
available_images = [
|
|
|
|
|
|
f for f in os.listdir(source_image_dir)
|
|
|
|
|
|
if os.path.isfile(os.path.join(source_image_dir, f)) and
|
|
|
|
|
|
f.lower().endswith(image_extensions)
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
if not available_images:
|
|
|
|
|
|
logger.error(f"源目录中没有找到图像: {source_image_dir}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"源目录中找到 {len(available_images)} 张图像")
|
|
|
|
|
|
|
|
|
|
|
|
# 过滤掉已经在海报中使用的图像
|
|
|
|
|
|
available_images = [img for img in available_images if img not in used_images]
|
|
|
|
|
|
|
|
|
|
|
|
if not available_images:
|
|
|
|
|
|
logger.warning("所有图像都已在海报中使用,无法创建额外配图")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"过滤后可用图像数量: {len(available_images)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 如果可用图像少于请求数量,进行警告但继续处理
|
2025-05-06 15:03:03 +08:00
|
|
|
|
if len(available_images) < num_images:
|
2025-04-26 14:53:54 +08:00
|
|
|
|
logger.warning(
|
2025-05-06 15:03:03 +08:00
|
|
|
|
f"可用图像数量 ({len(available_images)}) 少于请求的配图数量 ({num_images}),"
|
2025-04-26 14:53:54 +08:00
|
|
|
|
f"将使用所有可用图像"
|
|
|
|
|
|
)
|
|
|
|
|
|
selected_images = available_images
|
|
|
|
|
|
else:
|
|
|
|
|
|
# 随机选择额外图像
|
2025-05-06 15:03:03 +08:00
|
|
|
|
random.seed(sum(map(ord, ''.join(available_images)))) # 确保结果一致性
|
|
|
|
|
|
selected_images = random.sample(available_images, num_images)
|
|
|
|
|
|
random.seed() # 重置随机种子
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
return selected_images
|
|
|
|
|
|
|
|
|
|
|
|
def process_single_image(
|
|
|
|
|
|
self,
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
image_path,
|
|
|
|
|
|
image_filename,
|
|
|
|
|
|
index,
|
|
|
|
|
|
source_dir,
|
|
|
|
|
|
output_filename,
|
|
|
|
|
|
seed,
|
|
|
|
|
|
variation_strength,
|
2025-05-09 14:00:46 +08:00
|
|
|
|
extra_effects,
|
2025-05-09 16:03:23 +08:00
|
|
|
|
collage_style="grid_2x2"
|
2025-05-06 15:03:03 +08:00
|
|
|
|
):
|
|
|
|
|
|
"""处理单张图像 - 此方法可在独立进程中运行"""
|
|
|
|
|
|
try:
|
2025-05-09 15:40:41 +08:00
|
|
|
|
# 使用core.simple_collage模块处理图像
|
|
|
|
|
|
style = collage_style if collage_style else "slice"
|
2025-05-09 14:00:46 +08:00
|
|
|
|
|
2025-05-09 15:40:41 +08:00
|
|
|
|
# 创建临时目录来存放图像,以便传递给process_collage函数
|
|
|
|
|
|
import tempfile
|
|
|
|
|
|
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
|
|
|
# 复制图像到临时目录
|
|
|
|
|
|
temp_image_path = os.path.join(temp_dir, image_filename)
|
|
|
|
|
|
shutil.copy2(image_path, temp_image_path)
|
|
|
|
|
|
|
|
|
|
|
|
# 设置随机种子以确保结果一致性
|
|
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed(seed)
|
|
|
|
|
|
np.random.seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
# 调用core.simple_collage模块处理图像
|
|
|
|
|
|
target_size = (900, 1200) # 3:4比例
|
|
|
|
|
|
collage_images, used_image_filenames = process_collage(
|
|
|
|
|
|
temp_dir,
|
|
|
|
|
|
style=style,
|
|
|
|
|
|
target_size=target_size,
|
|
|
|
|
|
output_count=1
|
2025-05-09 14:00:46 +08:00
|
|
|
|
)
|
2025-05-09 15:40:41 +08:00
|
|
|
|
|
|
|
|
|
|
# 重置随机种子
|
|
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed()
|
|
|
|
|
|
np.random.seed()
|
|
|
|
|
|
|
|
|
|
|
|
if not collage_images or len(collage_images) == 0:
|
|
|
|
|
|
logger.error(f"拼图模块没有生成有效的图像: {image_filename}")
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
processed_image = collage_images[0]
|
|
|
|
|
|
|
|
|
|
|
|
# 确保图像是RGB模式,解决"cannot write mode RGBA as JPEG"错误
|
|
|
|
|
|
if processed_image.mode == 'RGBA':
|
|
|
|
|
|
logger.debug(f"将RGBA图像转换为RGB模式: {image_filename}")
|
|
|
|
|
|
# 创建白色背景并粘贴RGBA图像
|
|
|
|
|
|
background = Image.new('RGB', processed_image.size, (255, 255, 255))
|
|
|
|
|
|
background.paste(processed_image, mask=processed_image.split()[3]) # 使用alpha通道作为mask
|
|
|
|
|
|
processed_image = background
|
|
|
|
|
|
elif processed_image.mode != 'RGB':
|
|
|
|
|
|
logger.debug(f"将{processed_image.mode}图像转换为RGB模式: {image_filename}")
|
|
|
|
|
|
processed_image = processed_image.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
# 创建元数据
|
|
|
|
|
|
additional_metadata = {
|
|
|
|
|
|
"original_image": image_filename,
|
|
|
|
|
|
"additional_index": index + 1,
|
|
|
|
|
|
"source_dir": source_dir,
|
|
|
|
|
|
"is_additional_image": True,
|
|
|
|
|
|
"processed": True,
|
|
|
|
|
|
"aspect_ratio": "3:4",
|
|
|
|
|
|
"collage_style": style
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# 使用输出处理器保存图像
|
|
|
|
|
|
return self.output_handler.handle_generated_image(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
'additional', # 图像类型为additional
|
|
|
|
|
|
processed_image,
|
|
|
|
|
|
output_filename,
|
|
|
|
|
|
additional_metadata
|
2025-05-06 16:52:03 +08:00
|
|
|
|
)
|
2025-05-09 15:40:41 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"处理图像时出错 '{image_filename}': {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
2025-05-09 16:03:23 +08:00
|
|
|
|
|
2025-05-09 15:40:41 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
def add_dct_noise(self, image: Image.Image, intensity: float = 0.1, block_size: int = 8) -> Image.Image:
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""
|
2025-05-06 17:09:24 +08:00
|
|
|
|
在DCT域添加噪声以对抗pHash (需要Scipy) - 强化版
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
Args:
|
2025-05-06 16:34:46 +08:00
|
|
|
|
image: 输入图像 (建议传入灰度图或处理亮度通道)
|
|
|
|
|
|
intensity: 噪声强度 (0-1)
|
|
|
|
|
|
block_size: DCT块大小 (通常为8)
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
Returns:
|
2025-05-06 16:34:46 +08:00
|
|
|
|
添加噪声后的图像
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""
|
2025-05-06 16:34:46 +08:00
|
|
|
|
if not SCIPY_AVAILABLE:
|
|
|
|
|
|
logger.warning("Scipy 未安装,无法执行DCT噪声注入。请运行 'pip install scipy'")
|
|
|
|
|
|
# 可以选择返回原图,或执行一个简化的备用方案
|
|
|
|
|
|
# 这里我们返回原图
|
|
|
|
|
|
return image
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
try:
|
2025-05-06 17:09:24 +08:00
|
|
|
|
logger.debug(f"应用强化DCT噪声,强度: {intensity:.3f}")
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 确保是灰度图或提取亮度通道 (这里以灰度为例)
|
|
|
|
|
|
if image.mode != 'L':
|
|
|
|
|
|
gray_image = image.convert('L')
|
|
|
|
|
|
else:
|
|
|
|
|
|
gray_image = image
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
img_array = np.array(gray_image, dtype=float)
|
|
|
|
|
|
h, w = img_array.shape
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
# 确保尺寸是块大小的倍数
|
|
|
|
|
|
h_pad = (block_size - h % block_size) % block_size
|
|
|
|
|
|
w_pad = (block_size - w % block_size) % block_size
|
|
|
|
|
|
if h_pad != 0 or w_pad != 0:
|
|
|
|
|
|
img_array = np.pad(img_array, ((0, h_pad), (0, w_pad)), mode='reflect')
|
|
|
|
|
|
padded_h, padded_w = img_array.shape
|
|
|
|
|
|
else:
|
|
|
|
|
|
padded_h, padded_w = h, w
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
# 定义目标系数范围 (例如,排除DC的左上角4x4低频区域)
|
|
|
|
|
|
target_h, target_w = 4, 4
|
|
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
for y in range(0, padded_h, block_size):
|
|
|
|
|
|
for x in range(0, padded_w, block_size):
|
|
|
|
|
|
block = img_array[y:y+block_size, x:x+block_size]
|
|
|
|
|
|
dct_block = dct(dct(block.T, norm='ortho').T, norm='ortho')
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
# --- 强化噪声逻辑 ---
|
|
|
|
|
|
# 1. 计算噪声幅度,不再完全依赖系数本身大小
|
|
|
|
|
|
noise_amplitude = intensity * 30 # 固定基础噪声幅度 (可调)
|
2025-05-06 16:34:46 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
# 2. 生成噪声
|
|
|
|
|
|
noise = np.random.uniform(-noise_amplitude, noise_amplitude,
|
|
|
|
|
|
(min(block_size, target_h), min(block_size, target_w)))
|
2025-05-06 16:34:46 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
# 3. 应用噪声到目标低频区域 (跳过DC)
|
|
|
|
|
|
noise_h, noise_w = noise.shape
|
|
|
|
|
|
# 确保索引不超过dct_block的实际大小
|
|
|
|
|
|
apply_h, apply_w = min(noise_h, dct_block.shape[0]), min(noise_w, dct_block.shape[1])
|
2025-05-06 16:34:46 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
# 尝试乘性噪声 - 可能对保留结构更好一点
|
|
|
|
|
|
factor = np.random.uniform(1.0 - intensity * 0.8, 1.0 + intensity * 0.8,
|
|
|
|
|
|
(min(block_size, target_h), min(block_size, target_w)))
|
|
|
|
|
|
dct_block[0:apply_h, 0:apply_w] *= factor[0:apply_h, 0:apply_w]
|
|
|
|
|
|
dct_block[0, 0] /= factor[0, 0] # 恢复DC系数近似值
|
|
|
|
|
|
# --- 结束强化噪声逻辑 ---
|
|
|
|
|
|
|
|
|
|
|
|
idct_block = idct(idct(dct_block.T, norm='ortho').T, norm='ortho')
|
2025-05-06 16:34:46 +08:00
|
|
|
|
img_array[y:y+block_size, x:x+block_size] = idct_block
|
|
|
|
|
|
|
|
|
|
|
|
if h_pad != 0 or w_pad != 0:
|
|
|
|
|
|
img_array = img_array[:h, :w]
|
|
|
|
|
|
|
|
|
|
|
|
img_array = np.clip(img_array, 0, 255)
|
|
|
|
|
|
modified_gray = Image.fromarray(img_array.astype(np.uint8))
|
|
|
|
|
|
|
|
|
|
|
|
if image.mode == 'RGB' and gray_image is not image:
|
2025-05-06 17:09:24 +08:00
|
|
|
|
blend_factor = 0.35 # 稍微增加混合强度
|
2025-05-06 16:34:46 +08:00
|
|
|
|
r, g, b = image.split()
|
|
|
|
|
|
r = Image.blend(r, modified_gray, blend_factor)
|
|
|
|
|
|
g = Image.blend(g, modified_gray, blend_factor)
|
|
|
|
|
|
b = Image.blend(b, modified_gray, blend_factor)
|
2025-05-06 16:52:03 +08:00
|
|
|
|
merged_image = Image.merge('RGB', (r, g, b))
|
2025-05-06 16:34:46 +08:00
|
|
|
|
else:
|
2025-05-06 16:52:03 +08:00
|
|
|
|
merged_image = modified_gray
|
2025-05-06 16:34:46 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
logger.debug("强化DCT噪声应用成功。")
|
|
|
|
|
|
return merged_image
|
2025-05-06 16:52:03 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
except Exception as e:
|
2025-05-06 17:09:24 +08:00
|
|
|
|
logger.error(f"强化DCT噪声注入出错: {e}")
|
|
|
|
|
|
return image
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:34:46 +08:00
|
|
|
|
def add_phash_noise(self, image: Image.Image, intensity: float = 0.05) -> Image.Image:
|
2025-05-06 17:09:24 +08:00
|
|
|
|
"""调用强化的 add_dct_noise 方法"""
|
|
|
|
|
|
logger.debug(f"调用强化add_dct_noise对抗pHash,强度: {intensity:.3f}")
|
|
|
|
|
|
return self.add_dct_noise(image, intensity=intensity)
|
|
|
|
|
|
|
|
|
|
|
|
def apply_smart_crop_resize(self, image: Image.Image, strength: str = "medium") -> Image.Image:
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""
|
2025-05-08 14:22:30 +08:00
|
|
|
|
应用智能裁剪和重缩放来抵抗哈希算法 (增强版)
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
2025-05-06 17:09:24 +08:00
|
|
|
|
strength: 处理强度 ('low', 'medium', 'high')
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
Returns:
|
2025-05-06 17:09:24 +08:00
|
|
|
|
处理后的图像
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""
|
2025-05-06 17:09:24 +08:00
|
|
|
|
try:
|
|
|
|
|
|
original_width, original_height = image.size
|
|
|
|
|
|
logger.debug(f"应用智能裁剪+重缩放 (强度: {strength}), 原始尺寸: {original_width}x{original_height}")
|
|
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# 根据强度决定裁剪量 (增强)
|
2025-05-06 17:09:24 +08:00
|
|
|
|
if strength == "low":
|
2025-05-08 14:22:30 +08:00
|
|
|
|
max_crop = 3 # 原为 1
|
2025-05-06 17:09:24 +08:00
|
|
|
|
elif strength == "high":
|
2025-05-08 14:22:30 +08:00
|
|
|
|
max_crop = 10 # 原为 3
|
2025-05-06 17:09:24 +08:00
|
|
|
|
else: # medium
|
2025-05-08 14:22:30 +08:00
|
|
|
|
max_crop = 6 # 原为 2
|
2025-05-06 17:09:24 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
logger.debug(f"增强型智能裁剪: max_crop = {max_crop} 像素")
|
|
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
# 随机决定每边的裁剪量
|
|
|
|
|
|
crop_left = random.randint(0, max_crop)
|
|
|
|
|
|
crop_top = random.randint(0, max_crop)
|
|
|
|
|
|
crop_right = random.randint(0, max_crop)
|
|
|
|
|
|
crop_bottom = random.randint(0, max_crop)
|
|
|
|
|
|
|
|
|
|
|
|
# 计算裁剪后的边界
|
|
|
|
|
|
left = crop_left
|
|
|
|
|
|
top = crop_top
|
|
|
|
|
|
right = original_width - crop_right
|
|
|
|
|
|
bottom = original_height - crop_bottom
|
|
|
|
|
|
|
|
|
|
|
|
# 确保裁剪后尺寸至少为1x1
|
|
|
|
|
|
if left >= right or top >= bottom:
|
2025-05-08 14:22:30 +08:00
|
|
|
|
logger.warning("智能裁剪计算无效(裁剪过多),尝试使用较小裁剪量。")
|
|
|
|
|
|
# 尝试减小裁剪量再次计算
|
|
|
|
|
|
safe_max_crop = min(original_width // 4, original_height // 4, max_crop) # 保证不裁掉整个图
|
|
|
|
|
|
crop_left = random.randint(0, safe_max_crop)
|
|
|
|
|
|
crop_top = random.randint(0, safe_max_crop)
|
|
|
|
|
|
crop_right = random.randint(0, safe_max_crop)
|
|
|
|
|
|
crop_bottom = random.randint(0, safe_max_crop)
|
|
|
|
|
|
left = crop_left
|
|
|
|
|
|
top = crop_top
|
|
|
|
|
|
right = original_width - crop_right
|
|
|
|
|
|
bottom = original_height - crop_bottom
|
|
|
|
|
|
if left >= right or top >= bottom: # 再次失败则跳过
|
|
|
|
|
|
logger.error("智能裁剪再次失败,跳过此步骤。")
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
logger.debug(f" 裁剪参数: L={crop_left}, T={crop_top}, R={crop_right}, B={crop_bottom}")
|
|
|
|
|
|
logger.debug(f" 裁剪区域: ({left}, {top}, {right}, {bottom})")
|
|
|
|
|
|
|
|
|
|
|
|
# 执行裁剪
|
|
|
|
|
|
cropped_image = image.crop((left, top, right, bottom))
|
|
|
|
|
|
|
|
|
|
|
|
# 使用高质量插值将图像缩放回原始尺寸
|
|
|
|
|
|
logger.debug(f" 将裁剪后图像 ({cropped_image.width}x{cropped_image.height}) 缩放回 ({original_width}x{original_height})")
|
|
|
|
|
|
resampling_filter = Image.LANCZOS # 高质量插值
|
|
|
|
|
|
resized_image = cropped_image.resize((original_width, original_height), resample=resampling_filter)
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug("智能裁剪+重缩放应用成功。")
|
|
|
|
|
|
return resized_image
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"智能裁剪+重缩放时出错: {e}")
|
|
|
|
|
|
return image # 出错时返回原图
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
def perturb_color_histogram(self, image: Image.Image, strength: float = 0.03) -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
扰动图像的颜色直方图,对抗基于颜色统计的图像匹配
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
strength: 扰动强度(0-1)
|
2025-05-06 16:34:46 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
Returns:
|
|
|
|
|
|
处理后的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
logger.debug(f"扰动颜色直方图,强度: {strength:.3f}")
|
|
|
|
|
|
# 确保为RGB模式
|
|
|
|
|
|
if image.mode != 'RGB':
|
|
|
|
|
|
image = image.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
# 转为numpy数组
|
|
|
|
|
|
img_array = np.array(image)
|
|
|
|
|
|
height, width, channels = img_array.shape
|
|
|
|
|
|
|
|
|
|
|
|
# 对每个通道分别处理
|
|
|
|
|
|
for channel in range(channels):
|
|
|
|
|
|
# 计算当前通道的直方图
|
|
|
|
|
|
hist, _ = np.histogram(img_array[:,:,channel].flatten(), bins=64, range=(0, 256))
|
2025-05-06 16:34:46 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
# 找出主要颜色区间 (频率高的区间)
|
|
|
|
|
|
threshold = np.percentile(hist, 70) # 取前30%的颜色块
|
|
|
|
|
|
significant_bins = np.where(hist > threshold)[0]
|
2025-05-06 15:49:31 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
if len(significant_bins) > 0:
|
|
|
|
|
|
for bin_idx in significant_bins:
|
|
|
|
|
|
# 计算当前bin对应的颜色范围
|
|
|
|
|
|
bin_width = 256 // 64
|
|
|
|
|
|
color_low = bin_idx * bin_width
|
|
|
|
|
|
color_high = (bin_idx + 1) * bin_width
|
|
|
|
|
|
|
|
|
|
|
|
# 创建颜色范围掩码
|
|
|
|
|
|
mask = (img_array[:,:,channel] >= color_low) & (img_array[:,:,channel] < color_high)
|
|
|
|
|
|
|
|
|
|
|
|
if np.any(mask):
|
|
|
|
|
|
# 生成随机偏移值
|
|
|
|
|
|
offset = int(strength * bin_width * (random.random() - 0.5) * 2)
|
|
|
|
|
|
|
|
|
|
|
|
# 应用偏移,确保在0-255范围内
|
|
|
|
|
|
img_array[:,:,channel][mask] = np.clip(
|
|
|
|
|
|
img_array[:,:,channel][mask] + offset, 0, 255).astype(np.uint8)
|
2025-05-06 16:34:46 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
# 转回PIL图像
|
|
|
|
|
|
logger.debug("颜色直方图扰动成功。")
|
|
|
|
|
|
return Image.fromarray(img_array)
|
2025-05-06 15:49:31 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
def strip_metadata(self, image: Image.Image) -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
移除图像中的所有元数据 (修复版)
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
无元数据的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
logger.debug("移除图像元数据...")
|
|
|
|
|
|
try:
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# 确保图像处于适合保存的模式(例如RGB)
|
2025-05-06 17:09:24 +08:00
|
|
|
|
if image.mode == 'RGBA':
|
|
|
|
|
|
# 创建一个白色背景,然后粘贴带有alpha的图像
|
|
|
|
|
|
background = Image.new("RGB", image.size, (255, 255, 255))
|
|
|
|
|
|
background.paste(image, mask=image.split()[3]) # 3 is the alpha channel
|
|
|
|
|
|
image_to_save = background
|
|
|
|
|
|
elif image.mode == 'P':
|
|
|
|
|
|
# 带调色板的图像转换为RGB
|
|
|
|
|
|
image_to_save = image.convert('RGB')
|
2025-05-08 14:22:30 +08:00
|
|
|
|
elif image.mode == 'L':
|
|
|
|
|
|
# 灰度图通常可以保存为JPEG或PNG
|
2025-05-06 17:09:24 +08:00
|
|
|
|
image_to_save = image
|
2025-05-08 14:22:30 +08:00
|
|
|
|
elif image.mode == 'RGB':
|
|
|
|
|
|
image_to_save = image # 已经是RGB,直接使用
|
|
|
|
|
|
else:
|
|
|
|
|
|
logger.warning(f"未知的图像模式 {image.mode},尝试转换为RGB进行元数据剥离。")
|
|
|
|
|
|
image_to_save = image.convert('RGB')
|
2025-05-06 17:09:24 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# 保存到内存缓冲区,强制使用JPEG格式以剥离元数据
|
2025-05-06 17:09:24 +08:00
|
|
|
|
data = io.BytesIO()
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# --- FIX: 强制使用JPEG格式保存到缓冲区 ---
|
|
|
|
|
|
save_format = 'JPEG'
|
|
|
|
|
|
logger.debug(f"强制使用 {save_format} 格式保存以剥离元数据")
|
|
|
|
|
|
image_to_save.save(data, format=save_format, quality=95) # 使用高质量JPEG
|
|
|
|
|
|
# --- END FIX ---
|
2025-05-06 17:09:24 +08:00
|
|
|
|
|
|
|
|
|
|
data.seek(0) # 重置缓冲区指针
|
|
|
|
|
|
reloaded_image = Image.open(data)
|
|
|
|
|
|
logger.debug("元数据移除成功。")
|
|
|
|
|
|
return reloaded_image
|
2025-05-08 14:22:30 +08:00
|
|
|
|
|
2025-05-06 17:09:24 +08:00
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"移除元数据时出错: {e}")
|
2025-05-08 14:22:30 +08:00
|
|
|
|
logger.error(traceback.format_exc()) # 打印详细错误
|
2025-05-06 17:09:24 +08:00
|
|
|
|
return image # 出错时返回原图
|
|
|
|
|
|
|
2025-05-06 17:11:29 +08:00
|
|
|
|
def apply_overlay_noise(self, image: Image.Image, alpha: int = 10, noise_type: str = 'uniform') -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
在图像上叠加一个低透明度的噪声图层
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
alpha: 叠加噪声图层的 Alpha 值 (0-255)
|
|
|
|
|
|
noise_type: 'gaussian' 或 'uniform'
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
叠加噪声后的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
try:
|
|
|
|
|
|
logger.debug(f"应用低透明度噪声叠加: alpha={alpha}, type={noise_type}")
|
|
|
|
|
|
# 确保图像是 RGBA 模式以处理透明度
|
|
|
|
|
|
if image.mode != 'RGBA':
|
|
|
|
|
|
base_image = image.convert('RGBA')
|
|
|
|
|
|
else:
|
|
|
|
|
|
base_image = image.copy() # 操作副本
|
|
|
|
|
|
|
|
|
|
|
|
width, height = base_image.size
|
|
|
|
|
|
|
|
|
|
|
|
# 创建噪声图层 (灰度噪声即可)
|
|
|
|
|
|
if noise_type == 'gaussian':
|
|
|
|
|
|
# 生成范围在 0-255 的高斯噪声,均值128
|
|
|
|
|
|
noise_array = np.random.normal(loc=128, scale=40, size=(height, width)).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
else: # uniform
|
|
|
|
|
|
noise_array = np.random.randint(0, 256, size=(height, width), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
noise_image = Image.fromarray(noise_array, mode='L')
|
|
|
|
|
|
|
|
|
|
|
|
# 将噪声灰度图转换为 RGBA,并设置 alpha 通道
|
|
|
|
|
|
noise_rgba = noise_image.convert('RGBA')
|
|
|
|
|
|
# 创建一个全为指定 alpha 值的通道
|
|
|
|
|
|
alpha_channel = Image.new('L', noise_image.size, alpha)
|
|
|
|
|
|
noise_rgba.putalpha(alpha_channel)
|
|
|
|
|
|
|
|
|
|
|
|
# 使用 alpha_composite 进行混合叠加
|
|
|
|
|
|
# alpha_composite 要求两个输入都是 RGBA
|
|
|
|
|
|
combined_image = Image.alpha_composite(base_image, noise_rgba)
|
|
|
|
|
|
|
|
|
|
|
|
# 通常我们希望最终结果是 RGB,所以转换回去
|
|
|
|
|
|
# 如果原图就是 RGBA 且需要保留透明度,则省略此步
|
|
|
|
|
|
final_image = combined_image.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug("低透明度噪声叠加应用成功。")
|
|
|
|
|
|
return final_image
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"应用叠加噪声时出错: {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc()) # 打印详细错误
|
|
|
|
|
|
return image # 出错时返回原图
|
|
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
def apply_ahash_specific_disruption(self, image: Image.Image, strength: str = "medium") -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
专门针对aHash的干扰方法:插入亮度带 (增强版)
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
strength: 处理强度 ('low', 'medium', 'high')
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
处理后的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
try:
|
|
|
|
|
|
# 设定强度相关参数 (增强)
|
|
|
|
|
|
if strength == "low":
|
|
|
|
|
|
intensity = 0.08 # 原为 0.02
|
|
|
|
|
|
bands = 2
|
|
|
|
|
|
elif strength == "high":
|
|
|
|
|
|
intensity = 0.18 # 原为 0.04
|
|
|
|
|
|
bands = 4
|
|
|
|
|
|
else: # medium
|
|
|
|
|
|
intensity = 0.12 # 原为 0.03
|
|
|
|
|
|
bands = 3
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"应用aHash特定干扰 (亮度带) (增强版), 强度:{strength}, 条带数:{bands}, 强度因子:{intensity:.3f}")
|
|
|
|
|
|
|
|
|
|
|
|
# ... (其余逻辑不变) ...
|
|
|
|
|
|
result = image.copy()
|
|
|
|
|
|
width, height = result.size
|
|
|
|
|
|
pixels = result.load()
|
|
|
|
|
|
|
|
|
|
|
|
is_horizontal = random.choice([True, False])
|
|
|
|
|
|
band_positions = []
|
|
|
|
|
|
if is_horizontal:
|
|
|
|
|
|
for _ in range(bands):
|
|
|
|
|
|
base_pos = random.randint(0, height - 1)
|
|
|
|
|
|
band_positions.append(base_pos)
|
|
|
|
|
|
else:
|
|
|
|
|
|
for _ in range(bands):
|
|
|
|
|
|
base_pos = random.randint(0, width - 1)
|
|
|
|
|
|
band_positions.append(base_pos)
|
|
|
|
|
|
|
|
|
|
|
|
for y_idx in range(height): # Renamed y to y_idx to avoid conflict
|
|
|
|
|
|
for x_idx in range(width): # Renamed x to x_idx to avoid conflict
|
|
|
|
|
|
is_on_band = False
|
|
|
|
|
|
if is_horizontal:
|
|
|
|
|
|
for pos in band_positions:
|
|
|
|
|
|
if abs(y_idx - pos) <= 1:
|
|
|
|
|
|
is_on_band = True
|
|
|
|
|
|
break
|
|
|
|
|
|
else:
|
|
|
|
|
|
for pos in band_positions:
|
|
|
|
|
|
if abs(x_idx - pos) <= 1:
|
|
|
|
|
|
is_on_band = True
|
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
if is_on_band:
|
|
|
|
|
|
pixel = pixels[x_idx, y_idx]
|
|
|
|
|
|
if isinstance(pixel, int):
|
|
|
|
|
|
r_val = g_val = b_val = pixel # Renamed r,g,b to r_val, g_val, b_val
|
|
|
|
|
|
is_rgb = False
|
|
|
|
|
|
else:
|
|
|
|
|
|
if len(pixel) >= 3:
|
|
|
|
|
|
r_val, g_val, b_val = pixel[0], pixel[1], pixel[2]
|
|
|
|
|
|
is_rgb = True
|
|
|
|
|
|
else:
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
factor = 1.0 + intensity * (1 if random.random() > 0.5 else -1)
|
|
|
|
|
|
r_val, g_val, b_val = int(r_val * factor), int(g_val * factor), int(b_val * factor)
|
|
|
|
|
|
r_val, g_val, b_val = max(0, min(255, r_val)), max(0, min(255, g_val)), max(0, min(255, b_val))
|
|
|
|
|
|
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
if len(pixel) == 4:
|
|
|
|
|
|
pixels[x_idx, y_idx] = (r_val, g_val, b_val, pixel[3])
|
|
|
|
|
|
else:
|
|
|
|
|
|
pixels[x_idx, y_idx] = (r_val, g_val, b_val)
|
|
|
|
|
|
else:
|
|
|
|
|
|
pixels[x_idx, y_idx] = r_val
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"aHash特定干扰完成: {'水平' if is_horizontal else '垂直'}亮度带")
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"应用aHash特定干扰时出错: {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def apply_dhash_specific_disruption(self, image: Image.Image, strength: str = "medium") -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
专门针对dHash的干扰方法:梯度反向模式 (增强版)
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
strength: 处理强度 ('low', 'medium', 'high')
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
处理后的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
try:
|
|
|
|
|
|
# 设定强度相关参数 (增强)
|
|
|
|
|
|
if strength == "low":
|
|
|
|
|
|
gradient_strength = 0.08 # 原为 0.02
|
|
|
|
|
|
regions = 2
|
|
|
|
|
|
elif strength == "high":
|
|
|
|
|
|
gradient_strength = 0.18 # 原为 0.04
|
|
|
|
|
|
regions = 4
|
|
|
|
|
|
else: # medium
|
|
|
|
|
|
gradient_strength = 0.12 # 原为 0.03
|
|
|
|
|
|
regions = 3
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"应用dHash特定干扰 (梯度反向) (增强版), 强度:{strength}, 区域数:{regions}, 梯度强度:{gradient_strength:.3f}")
|
|
|
|
|
|
|
|
|
|
|
|
# ... (其余逻辑不变, 确保使用增强的 gradient_strength) ...
|
|
|
|
|
|
result = image.copy()
|
|
|
|
|
|
width, height = result.size
|
|
|
|
|
|
|
|
|
|
|
|
for _ in range(regions):
|
|
|
|
|
|
region_w = random.randint(width//12, width//8) # Renamed region_width to region_w
|
|
|
|
|
|
region_h = random.randint(height//12, height//8) # Renamed region_height to region_h
|
|
|
|
|
|
region_x_coord = random.randint(0, width - region_w) # Renamed region_x to region_x_coord
|
|
|
|
|
|
region_y_coord = random.randint(0, height - region_h) # Renamed region_y to region_y_coord
|
|
|
|
|
|
|
|
|
|
|
|
region = result.crop((region_x_coord, region_y_coord, region_x_coord + region_w, region_y_coord + region_h))
|
|
|
|
|
|
region_array = np.array(region)
|
|
|
|
|
|
is_rgb = len(region_array.shape) == 3
|
|
|
|
|
|
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
gray_region = np.mean(region_array, axis=2).astype(np.uint8)
|
|
|
|
|
|
else:
|
|
|
|
|
|
gray_region = region_array
|
|
|
|
|
|
|
|
|
|
|
|
h_gradients = np.zeros_like(gray_region, dtype=np.int16)
|
|
|
|
|
|
v_gradients = np.zeros_like(gray_region, dtype=np.int16)
|
|
|
|
|
|
|
|
|
|
|
|
for y_idx in range(region_h): # Renamed y to y_idx
|
|
|
|
|
|
for x_idx in range(region_w-1): # Renamed x to x_idx
|
|
|
|
|
|
h_gradients[y_idx, x_idx] = int(gray_region[y_idx, x_idx+1]) - int(gray_region[y_idx, x_idx])
|
|
|
|
|
|
|
|
|
|
|
|
for y_idx in range(region_h-1): # Renamed y to y_idx
|
|
|
|
|
|
for x_idx in range(region_w): # Renamed x to x_idx
|
|
|
|
|
|
v_gradients[y_idx, x_idx] = int(gray_region[y_idx+1, x_idx]) - int(gray_region[y_idx, x_idx])
|
|
|
|
|
|
|
|
|
|
|
|
modified_region = region_array.astype(np.float32)
|
|
|
|
|
|
for y_idx in range(region_h): # Renamed y to y_idx
|
|
|
|
|
|
for x_idx in range(region_w): # Renamed x to x_idx
|
|
|
|
|
|
if x_idx < region_w-1 and abs(h_gradients[y_idx, x_idx]) > 5:
|
|
|
|
|
|
h_change = -h_gradients[y_idx, x_idx] * gradient_strength
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
for c_channel in range(3): # Renamed c to c_channel
|
|
|
|
|
|
modified_region[y_idx, x_idx+1, c_channel] = np.clip(
|
|
|
|
|
|
modified_region[y_idx, x_idx+1, c_channel] + h_change/2, 0, 255)
|
|
|
|
|
|
modified_region[y_idx, x_idx, c_channel] = np.clip(
|
|
|
|
|
|
modified_region[y_idx, x_idx, c_channel] - h_change/2, 0, 255)
|
|
|
|
|
|
else:
|
|
|
|
|
|
modified_region[y_idx, x_idx+1] = np.clip(
|
|
|
|
|
|
modified_region[y_idx, x_idx+1] + h_change/2, 0, 255)
|
|
|
|
|
|
modified_region[y_idx, x_idx] = np.clip(
|
|
|
|
|
|
modified_region[y_idx, x_idx] - h_change/2, 0, 255)
|
|
|
|
|
|
|
|
|
|
|
|
if y_idx < region_h-1 and abs(v_gradients[y_idx, x_idx]) > 5:
|
|
|
|
|
|
v_change = -v_gradients[y_idx, x_idx] * gradient_strength
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
for c_channel in range(3): # Renamed c to c_channel
|
|
|
|
|
|
modified_region[y_idx+1, x_idx, c_channel] = np.clip(
|
|
|
|
|
|
modified_region[y_idx+1, x_idx, c_channel] + v_change/2, 0, 255)
|
|
|
|
|
|
modified_region[y_idx, x_idx, c_channel] = np.clip(
|
|
|
|
|
|
modified_region[y_idx, x_idx, c_channel] - v_change/2, 0, 255)
|
|
|
|
|
|
else:
|
|
|
|
|
|
modified_region[y_idx+1, x_idx] = np.clip(
|
|
|
|
|
|
modified_region[y_idx+1, x_idx] + v_change/2, 0, 255)
|
|
|
|
|
|
modified_region[y_idx, x_idx] = np.clip(
|
|
|
|
|
|
modified_region[y_idx, x_idx] - v_change/2, 0, 255)
|
|
|
|
|
|
|
|
|
|
|
|
modified_region = modified_region.astype(np.uint8)
|
|
|
|
|
|
modified_region_image = Image.fromarray(modified_region)
|
|
|
|
|
|
result.paste(modified_region_image, (region_x_coord, region_y_coord))
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"dHash特定干扰完成: 在{regions}个区域应用梯度反向")
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"应用dHash特定干扰时出错: {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def apply_phash_specific_disruption(self, image: Image.Image, strength: str = "medium") -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
专门针对pHash的干扰方法:定向DCT系数修改 (增强版)
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
strength: 处理强度 ('low', 'medium', 'high')
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
处理后的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
if not SCIPY_AVAILABLE:
|
|
|
|
|
|
logger.warning("Scipy 未安装,无法执行pHash专用干扰。请运行 'pip install scipy'")
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
# 设定强度相关参数 (增强)
|
|
|
|
|
|
if strength == "low":
|
|
|
|
|
|
intensity = 0.20 # 原为 0.10
|
|
|
|
|
|
key_positions_count = 4
|
|
|
|
|
|
elif strength == "high":
|
|
|
|
|
|
intensity = 0.40 # 原为 0.20
|
|
|
|
|
|
key_positions_count = 8
|
|
|
|
|
|
else: # medium
|
|
|
|
|
|
intensity = 0.30 # 原为 0.15
|
|
|
|
|
|
key_positions_count = 6
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"应用pHash特定干扰 (定向DCT干扰) (增强版), 强度:{strength}, 密度:{key_positions_count}, 强度因子:{intensity:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
# ... (其余逻辑不变, 确保使用增强的 intensity) ...
|
|
|
|
|
|
gray_image = image.convert('L')
|
|
|
|
|
|
img_array_np = np.array(gray_image) # Renamed img_array to img_array_np
|
|
|
|
|
|
h_img, w_img = img_array_np.shape # Renamed h,w to h_img,w_img
|
|
|
|
|
|
|
|
|
|
|
|
resized_array = np.array(gray_image.resize((32, 32), Image.LANCZOS))
|
|
|
|
|
|
dct_array = dct(dct(resized_array.T, norm='ortho').T, norm='ortho')
|
|
|
|
|
|
|
|
|
|
|
|
key_positions = []
|
|
|
|
|
|
for i_pos in range(1, 8): # Renamed i to i_pos
|
|
|
|
|
|
for j_pos in range(1, 8): # Renamed j to j_pos
|
|
|
|
|
|
key_positions.append((i_pos, j_pos))
|
|
|
|
|
|
|
|
|
|
|
|
selected_positions = random.sample(key_positions, k=min(len(key_positions), key_positions_count))
|
|
|
|
|
|
|
|
|
|
|
|
block_h_size, block_w_size = h_img // 32, w_img // 32 # Renamed block_height, block_width
|
|
|
|
|
|
|
|
|
|
|
|
for dct_y_coord, dct_x_coord in selected_positions: # Renamed dct_y, dct_x
|
|
|
|
|
|
orig_y_coord = dct_y_coord * block_h_size # Renamed orig_y to orig_y_coord
|
|
|
|
|
|
orig_x_coord = dct_x_coord * block_w_size # Renamed orig_x to orig_x_coord
|
|
|
|
|
|
|
|
|
|
|
|
pattern_s = min(block_h_size, block_w_size) # Renamed pattern_size to pattern_s
|
|
|
|
|
|
for y_off in range(pattern_s): # Renamed y_offset to y_off
|
|
|
|
|
|
for x_off in range(pattern_s): # Renamed x_offset to x_off
|
|
|
|
|
|
y_val = orig_y_coord + y_off # Renamed y to y_val
|
|
|
|
|
|
x_val = orig_x_coord + x_off # Renamed x to x_val
|
|
|
|
|
|
if 0 <= y_val < h_img and 0 <= x_val < w_img:
|
|
|
|
|
|
offset_val = intensity * 20 * math.sin(2 * math.pi * (y_off / pattern_s)) * \
|
|
|
|
|
|
math.cos(2 * math.pi * (x_off / pattern_s)) # Renamed offset to offset_val
|
|
|
|
|
|
img_array_np[y_val, x_val] = np.clip(img_array_np[y_val, x_val] + offset_val, 0, 255)
|
|
|
|
|
|
|
|
|
|
|
|
result_img = Image.fromarray(img_array_np.astype(np.uint8)) # Renamed result to result_img
|
|
|
|
|
|
|
|
|
|
|
|
if image.mode != 'L':
|
|
|
|
|
|
r_channel, g_channel, b_channel = image.split()[:3] # Renamed r,g,b to r_channel, g_channel, b_channel
|
|
|
|
|
|
|
|
|
|
|
|
diff_img = ImageChops.difference(gray_image, result_img) # Renamed diff to diff_img
|
|
|
|
|
|
diff_array_np = np.array(diff_img) # Renamed diff_array to diff_array_np
|
|
|
|
|
|
|
|
|
|
|
|
r_array_np = np.array(r_channel) # Renamed r_array to r_array_np
|
|
|
|
|
|
g_array_np = np.array(g_channel) # Renamed g_array to g_array_np
|
|
|
|
|
|
b_array_np = np.array(b_channel) # Renamed b_array to b_array_np
|
|
|
|
|
|
|
|
|
|
|
|
transfer_factor = 0.8
|
|
|
|
|
|
r_array_np = np.clip(r_array_np + diff_array_np * transfer_factor, 0, 255).astype(np.uint8)
|
|
|
|
|
|
g_array_np = np.clip(g_array_np + diff_array_np * transfer_factor, 0, 255).astype(np.uint8)
|
|
|
|
|
|
b_array_np = np.clip(b_array_np + diff_array_np * transfer_factor, 0, 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
r_new_img = Image.fromarray(r_array_np) # Renamed r_new to r_new_img
|
|
|
|
|
|
g_new_img = Image.fromarray(g_array_np) # Renamed g_new to g_new_img
|
|
|
|
|
|
b_new_img = Image.fromarray(b_array_np) # Renamed b_new to b_new_img
|
|
|
|
|
|
|
|
|
|
|
|
if image.mode == 'RGBA':
|
|
|
|
|
|
alpha_channel = image.split()[3] # Renamed a to alpha_channel
|
|
|
|
|
|
result_img = Image.merge('RGBA', (r_new_img, g_new_img, b_new_img, alpha_channel))
|
|
|
|
|
|
else:
|
|
|
|
|
|
result_img = Image.merge('RGB', (r_new_img, g_new_img, b_new_img))
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"pHash特定干扰完成: 修改了{len(selected_positions)}个DCT关键位置")
|
|
|
|
|
|
return result_img
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"应用pHash特定干扰时出错: {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def apply_block_based_perturbations(self, image: Image.Image, block_size: int = 16, strength: str = "medium") -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
对图像各个块应用不同的、独立的干扰策略 (增强版)
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
block_size: 块大小
|
|
|
|
|
|
strength: 处理强度 ('low', 'medium', 'high')
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
处理后的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
try:
|
|
|
|
|
|
# 设定强度相关参数 (增强)
|
|
|
|
|
|
if strength == "low":
|
|
|
|
|
|
factor_range = 0.08 # 原为 0.03
|
|
|
|
|
|
skip_prob = 0.5
|
|
|
|
|
|
elif strength == "high":
|
|
|
|
|
|
factor_range = 0.18 # 原为 0.06
|
|
|
|
|
|
skip_prob = 0.2
|
|
|
|
|
|
else: # medium
|
|
|
|
|
|
factor_range = 0.12 # 原为 0.045
|
|
|
|
|
|
skip_prob = 0.35
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"应用块级混合干扰 (增强版), 块大小:{block_size}, 强度:{strength}, 因子范围:{factor_range:.3f}")
|
|
|
|
|
|
|
|
|
|
|
|
# ... (其余逻辑不变, 确保使用增强的 factor_range) ...
|
|
|
|
|
|
result = image.copy() # Renamed result_img to result
|
|
|
|
|
|
width, height = image.size
|
|
|
|
|
|
img_array = np.array(result)
|
|
|
|
|
|
is_rgb = len(img_array.shape) == 3
|
|
|
|
|
|
|
|
|
|
|
|
strategies = ['brightness', 'contrast', 'hue_shift', 'gradient_flip', 'micro_pattern', 'skip']
|
|
|
|
|
|
processed_blocks = 0
|
|
|
|
|
|
skipped_blocks = 0
|
|
|
|
|
|
|
|
|
|
|
|
for y_coord in range(0, height, block_size): # Renamed y to y_coord
|
|
|
|
|
|
for x_coord in range(0, width, block_size): # Renamed x to x_coord
|
|
|
|
|
|
block_w = min(block_size, width - x_coord)
|
|
|
|
|
|
block_h = min(block_size, height - y_coord)
|
|
|
|
|
|
|
|
|
|
|
|
if block_w < 4 or block_h < 4:
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
current_strategy = 'skip' if random.random() < skip_prob else random.choice([s for s in strategies if s != 'skip']) # Renamed strategy to current_strategy
|
|
|
|
|
|
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
current_block = img_array[y_coord:y_coord+block_h, x_coord:x_coord+block_w, :] # Renamed block to current_block
|
|
|
|
|
|
else:
|
|
|
|
|
|
current_block = img_array[y_coord:y_coord+block_h, x_coord:x_coord+block_w]
|
|
|
|
|
|
|
|
|
|
|
|
if current_strategy == 'skip':
|
|
|
|
|
|
skipped_blocks +=1
|
|
|
|
|
|
elif current_strategy == 'brightness':
|
|
|
|
|
|
factor = 1.0 + random.uniform(-factor_range, factor_range)
|
|
|
|
|
|
current_block = (current_block.astype(float) * factor).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
processed_blocks += 1
|
|
|
|
|
|
elif current_strategy == 'contrast':
|
|
|
|
|
|
factor = 1.0 + random.uniform(-factor_range, factor_range)
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
mean_val = np.mean(current_block, axis=(0, 1), keepdims=True)
|
|
|
|
|
|
current_block = (((current_block.astype(float) - mean_val) * factor) + mean_val).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
else:
|
|
|
|
|
|
mean_val = np.mean(current_block)
|
|
|
|
|
|
current_block = (((current_block.astype(float) - mean_val) * factor) + mean_val).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
processed_blocks += 1
|
|
|
|
|
|
elif current_strategy == 'hue_shift' and is_rgb:
|
|
|
|
|
|
r_factor = 1.0 - random.uniform(0, factor_range/2)
|
|
|
|
|
|
g_factor = 1.0 - random.uniform(0, factor_range/2)
|
|
|
|
|
|
b_factor = 1.0 - random.uniform(0, factor_range/2)
|
|
|
|
|
|
r_ch, g_ch, b_ch = current_block[:,:,0], current_block[:,:,1], current_block[:,:,2] # Renamed r,g,b to r_ch,g_ch,b_ch
|
|
|
|
|
|
current_block[:,:,0] = (r_ch * r_factor + g_ch * (1-r_factor)).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
current_block[:,:,1] = (g_ch * g_factor + b_ch * (1-g_factor)).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
current_block[:,:,2] = (b_ch * b_factor + r_ch * (1-b_factor)).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
processed_blocks += 1
|
|
|
|
|
|
elif current_strategy == 'gradient_flip':
|
|
|
|
|
|
if block_w > 2 and block_h > 2:
|
|
|
|
|
|
mid_w, mid_h = block_w // 2, block_h // 2
|
|
|
|
|
|
pattern_s = min(mid_w, mid_h) # Renamed pattern_size to pattern_s
|
|
|
|
|
|
for by_idx in range(1, pattern_s-1): # Renamed by to by_idx
|
|
|
|
|
|
for bx_idx in range(1, pattern_s-1): # Renamed bx to bx_idx
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
curr_val = np.mean(current_block[by_idx, bx_idx, :]) # Renamed curr to curr_val
|
|
|
|
|
|
right_val = np.mean(current_block[by_idx, bx_idx+1, :]) # Renamed right to right_val
|
|
|
|
|
|
below_val = np.mean(current_block[by_idx+1, bx_idx, :]) # Renamed below to below_val
|
|
|
|
|
|
if abs(curr_val - right_val) > 5:
|
|
|
|
|
|
diff_val = (curr_val - right_val) * factor_range # Renamed diff to diff_val
|
|
|
|
|
|
current_block[by_idx, bx_idx, :] = np.clip(current_block[by_idx, bx_idx, :] - diff_val/2, 0, 255).astype(np.uint8)
|
|
|
|
|
|
current_block[by_idx, bx_idx+1, :] = np.clip(current_block[by_idx, bx_idx+1, :] + diff_val/2, 0, 255).astype(np.uint8)
|
|
|
|
|
|
if abs(curr_val - below_val) > 5:
|
|
|
|
|
|
diff_val = (curr_val - below_val) * factor_range
|
|
|
|
|
|
current_block[by_idx, bx_idx, :] = np.clip(current_block[by_idx, bx_idx, :] - diff_val/2, 0, 255).astype(np.uint8)
|
|
|
|
|
|
current_block[by_idx+1, bx_idx, :] = np.clip(current_block[by_idx+1, bx_idx, :] + diff_val/2, 0, 255).astype(np.uint8)
|
|
|
|
|
|
else:
|
|
|
|
|
|
curr_val = float(current_block[by_idx, bx_idx])
|
|
|
|
|
|
right_val = float(current_block[by_idx, bx_idx+1])
|
|
|
|
|
|
below_val = float(current_block[by_idx+1, bx_idx])
|
|
|
|
|
|
if abs(curr_val - right_val) > 5:
|
|
|
|
|
|
diff_val = (curr_val - right_val) * factor_range
|
|
|
|
|
|
current_block[by_idx, bx_idx] = np.clip(current_block[by_idx, bx_idx] - diff_val/2, 0, 255).astype(np.uint8)
|
|
|
|
|
|
current_block[by_idx, bx_idx+1] = np.clip(current_block[by_idx, bx_idx+1] + diff_val/2, 0, 255).astype(np.uint8)
|
|
|
|
|
|
if abs(curr_val - below_val) > 5:
|
|
|
|
|
|
diff_val = (curr_val - below_val) * factor_range
|
|
|
|
|
|
current_block[by_idx, bx_idx] = np.clip(current_block[by_idx, bx_idx] - diff_val/2, 0, 255).astype(np.uint8)
|
|
|
|
|
|
current_block[by_idx+1, bx_idx] = np.clip(current_block[by_idx+1, bx_idx] + diff_val/2, 0, 255).astype(np.uint8)
|
|
|
|
|
|
processed_blocks += 1
|
|
|
|
|
|
elif current_strategy == 'micro_pattern':
|
|
|
|
|
|
pattern_type = random.choice(['dot', 'line', 'cross'])
|
|
|
|
|
|
center_y_coord, center_x_coord = block_h // 2, block_w // 2 # Renamed center_y, center_x
|
|
|
|
|
|
pattern_coords = []
|
|
|
|
|
|
if pattern_type == 'dot':
|
|
|
|
|
|
pattern_coords = [(center_y_coord, center_x_coord)]
|
|
|
|
|
|
elif pattern_type == 'line':
|
|
|
|
|
|
if random.choice([True, False]):
|
|
|
|
|
|
pattern_coords = [(center_y_coord, cx_val) for cx_val in range(center_x_coord-1, center_x_coord+2)] # Renamed cx to cx_val
|
|
|
|
|
|
else:
|
|
|
|
|
|
pattern_coords = [(cy_val, center_x_coord) for cy_val in range(center_y_coord-1, center_y_coord+2)] # Renamed cy to cy_val
|
|
|
|
|
|
else:
|
|
|
|
|
|
pattern_coords.extend([(center_y_coord, cx_val) for cx_val in range(center_x_coord-1, center_x_coord+2)])
|
|
|
|
|
|
pattern_coords.extend([(cy_val, center_x_coord) for cy_val in range(center_y_coord-1, center_y_coord+2) if (cy_val, center_x_coord) not in pattern_coords])
|
|
|
|
|
|
|
|
|
|
|
|
pattern_strength = random.uniform(factor_range*50, factor_range*100)
|
|
|
|
|
|
for py_coord, px_coord in pattern_coords: # Renamed py,px to py_coord,px_coord
|
|
|
|
|
|
if 0 <= py_coord < block_h and 0 <= px_coord < block_w:
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
target_channel = random.randint(0, 2) # Renamed channel to target_channel
|
|
|
|
|
|
if random.choice([True, False]):
|
|
|
|
|
|
current_block[py_coord, px_coord, target_channel] = np.clip(current_block[py_coord, px_coord, target_channel] + pattern_strength, 0, 255).astype(np.uint8)
|
|
|
|
|
|
else:
|
|
|
|
|
|
current_block[py_coord, px_coord, target_channel] = np.clip(current_block[py_coord, px_coord, target_channel] - pattern_strength, 0, 255).astype(np.uint8)
|
|
|
|
|
|
else:
|
|
|
|
|
|
if random.choice([True, False]):
|
|
|
|
|
|
current_block[py_coord, px_coord] = np.clip(current_block[py_coord, px_coord] + pattern_strength, 0, 255).astype(np.uint8)
|
|
|
|
|
|
else:
|
|
|
|
|
|
current_block[py_coord, px_coord] = np.clip(current_block[py_coord, px_coord] - pattern_strength, 0, 255).astype(np.uint8)
|
|
|
|
|
|
processed_blocks += 1
|
|
|
|
|
|
|
|
|
|
|
|
if is_rgb:
|
|
|
|
|
|
img_array[y_coord:y_coord+block_h, x_coord:x_coord+block_w, :] = current_block
|
|
|
|
|
|
else:
|
|
|
|
|
|
img_array[y_coord:y_coord+block_h, x_coord:x_coord+block_w] = current_block
|
|
|
|
|
|
|
|
|
|
|
|
result = Image.fromarray(img_array) # Result was already defined
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"块级混合干扰完成: 处理了{processed_blocks}个块, 跳过了{skipped_blocks}个块")
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"应用块级混合干扰时出错: {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def apply_strategic_hash_disruption(self, image: Image.Image, strength: str = "medium") -> Image.Image:
|
|
|
|
|
|
"""
|
|
|
|
|
|
战略性哈希干扰:对各种哈希算法进行有针对性的干扰
|
|
|
|
|
|
|
|
|
|
|
|
整合了多种针对性干扰策略,包括块级混合干扰和针对特定哈希算法的干扰。
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
image: 输入图像
|
|
|
|
|
|
strength: 处理强度 ('low', 'medium', 'high')
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
处理后的图像
|
|
|
|
|
|
"""
|
|
|
|
|
|
try:
|
|
|
|
|
|
logger.info(f"开始战略性哈希干扰 (强度: {strength})")
|
|
|
|
|
|
original_image_for_logging = image.copy()
|
|
|
|
|
|
|
|
|
|
|
|
# 设定策略应用概率
|
|
|
|
|
|
if strength == "low":
|
|
|
|
|
|
ahash_prob = 0.7
|
|
|
|
|
|
dhash_prob = 0.7
|
|
|
|
|
|
phash_prob = 0.9
|
|
|
|
|
|
block_prob = 0.6
|
|
|
|
|
|
block_size = 24
|
|
|
|
|
|
elif strength == "high":
|
|
|
|
|
|
ahash_prob = 0.9
|
|
|
|
|
|
dhash_prob = 0.9
|
|
|
|
|
|
phash_prob = 0.95
|
|
|
|
|
|
block_prob = 0.8
|
|
|
|
|
|
block_size = 16
|
|
|
|
|
|
else: # medium
|
|
|
|
|
|
ahash_prob = 0.8
|
|
|
|
|
|
dhash_prob = 0.8
|
|
|
|
|
|
phash_prob = 0.9
|
|
|
|
|
|
block_prob = 0.7
|
|
|
|
|
|
block_size = 20
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"策略概率: aHash={ahash_prob:.1f}, dHash={dhash_prob:.1f}, pHash={phash_prob:.1f}, 块级={block_prob:.1f}")
|
|
|
|
|
|
|
|
|
|
|
|
# 保存原图
|
|
|
|
|
|
result = image.copy()
|
|
|
|
|
|
applied_strategies = []
|
|
|
|
|
|
|
|
|
|
|
|
# 1. 应用块级混合干扰
|
|
|
|
|
|
if random.random() < block_prob:
|
|
|
|
|
|
result = self.apply_block_based_perturbations(result, block_size=block_size, strength=strength)
|
|
|
|
|
|
applied_strategies.append(f"BlockBased({block_size})")
|
|
|
|
|
|
|
|
|
|
|
|
# 2. 应用针对特定哈希算法的干扰
|
|
|
|
|
|
# 2.1 aHash特定干扰
|
|
|
|
|
|
if random.random() < ahash_prob:
|
|
|
|
|
|
result = self.apply_ahash_specific_disruption(result, strength)
|
|
|
|
|
|
applied_strategies.append("aHash")
|
|
|
|
|
|
|
|
|
|
|
|
# 2.2 dHash特定干扰
|
|
|
|
|
|
if random.random() < dhash_prob:
|
|
|
|
|
|
result = self.apply_dhash_specific_disruption(result, strength)
|
|
|
|
|
|
applied_strategies.append("dHash")
|
|
|
|
|
|
|
|
|
|
|
|
# 2.3 pHash特定干扰(最重要的一个)
|
|
|
|
|
|
if random.random() < phash_prob:
|
|
|
|
|
|
result = self.apply_phash_specific_disruption(result, strength)
|
|
|
|
|
|
applied_strategies.append("pHash")
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"已应用战略干扰: {', '.join(applied_strategies)}")
|
|
|
|
|
|
|
|
|
|
|
|
# 对比修改前后
|
|
|
|
|
|
try:
|
|
|
|
|
|
diff = ImageChops.difference(original_image_for_logging.convert('RGB'), result.convert('RGB')).getbbox()
|
|
|
|
|
|
if diff:
|
|
|
|
|
|
logger.info(f"图像已修改。差异区域: {diff}")
|
|
|
|
|
|
else:
|
|
|
|
|
|
logger.warning("!!!战略干扰似乎未修改图像!!!")
|
|
|
|
|
|
except Exception as log_e:
|
|
|
|
|
|
logger.warning(f"无法比较图像差异: {log_e}")
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"战略性哈希干扰完成 (强度: {strength})")
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"应用战略性哈希干扰时出错: {e}")
|
|
|
|
|
|
logger.error(traceback.format_exc())
|
|
|
|
|
|
return image # 出错时返回原图
|
|
|
|
|
|
|
2025-05-06 17:11:29 +08:00
|
|
|
|
def optimize_anti_hash_methods(self, image: Image.Image, strength: str = "medium") -> Image.Image:
|
2025-05-08 14:22:30 +08:00
|
|
|
|
"""优化后的哈希对抗方法,使用新的分层增强策略"""
|
|
|
|
|
|
logger.info(f"--- 开始优化抗哈希方法 (强度: {strength}) - 分层增强策略 ---")
|
|
|
|
|
|
processed_image = image.copy()
|
2025-05-06 17:11:29 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# 定义各阶段强度参数
|
|
|
|
|
|
global_max_crop: int
|
|
|
|
|
|
global_overlay_alpha: int
|
|
|
|
|
|
global_color_hist_strength: float
|
|
|
|
|
|
|
2025-05-06 17:11:29 +08:00
|
|
|
|
if strength == "low":
|
2025-05-08 14:22:30 +08:00
|
|
|
|
global_max_crop = 3
|
|
|
|
|
|
global_overlay_alpha = random.randint(8, 12)
|
|
|
|
|
|
global_color_hist_strength = 0.03
|
2025-05-06 17:11:29 +08:00
|
|
|
|
elif strength == "high":
|
2025-05-08 14:22:30 +08:00
|
|
|
|
global_max_crop = 10
|
|
|
|
|
|
global_overlay_alpha = random.randint(18, 25)
|
|
|
|
|
|
global_color_hist_strength = 0.08
|
|
|
|
|
|
else: # medium
|
|
|
|
|
|
global_max_crop = 6
|
|
|
|
|
|
global_overlay_alpha = random.randint(12, 18)
|
|
|
|
|
|
global_color_hist_strength = 0.05
|
2025-05-06 17:11:29 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
logger.debug(f"分层策略 - 全局扰动参数: strength_for_crop='{strength}' (内部max_crop将按新标准), overlay_alpha={global_overlay_alpha}, color_hist_strength={global_color_hist_strength:.3f}")
|
2025-05-06 17:11:29 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# --- 层 1: 基础全局扰动 ---
|
|
|
|
|
|
logger.info("应用基础全局扰动...")
|
|
|
|
|
|
|
|
|
|
|
|
# 1.1 智能裁剪 + 重缩放 (现在 apply_smart_crop_resize 内部已增强)
|
|
|
|
|
|
processed_image = self.apply_smart_crop_resize(processed_image, strength)
|
2025-05-06 17:11:29 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# 1.2 低透明度噪声叠加
|
|
|
|
|
|
processed_image = self.apply_overlay_noise(processed_image, alpha=global_overlay_alpha, noise_type='uniform')
|
2025-05-06 17:11:29 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# 1.3 颜色直方图扰动
|
|
|
|
|
|
if global_color_hist_strength > 0: # 确保强度大于0才应用
|
|
|
|
|
|
processed_image = self.perturb_color_histogram(processed_image, strength=global_color_hist_strength)
|
2025-05-06 17:11:29 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# --- 层 2: 战略性哈希干扰 (在基础扰动之上) ---
|
|
|
|
|
|
# apply_strategic_hash_disruption 内部调用的各 specific 和 block_based 方法已增强
|
|
|
|
|
|
logger.info("应用战略性哈希干扰 (各子方法已增强)...")
|
|
|
|
|
|
processed_image = self.apply_strategic_hash_disruption(processed_image, strength)
|
2025-05-06 17:11:29 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# --- 清除元数据 ---
|
|
|
|
|
|
processed_image = self.strip_metadata(processed_image)
|
2025-05-06 17:11:29 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
logger.info(f"--- 完成优化抗哈希方法 (强度: {strength}) - 分层增强策略 ---")
|
2025-05-06 17:11:29 +08:00
|
|
|
|
return processed_image
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
def optimized_process_image(
|
2025-04-26 15:53:44 +08:00
|
|
|
|
self,
|
|
|
|
|
|
image: Image.Image,
|
|
|
|
|
|
target_ratio: Tuple[int, int],
|
|
|
|
|
|
add_variation: bool = True,
|
|
|
|
|
|
seed: int = None,
|
2025-05-06 15:03:03 +08:00
|
|
|
|
variation_strength: str = "medium",
|
|
|
|
|
|
extra_effects: bool = True
|
2025-04-26 15:53:44 +08:00
|
|
|
|
) -> Image.Image:
|
2025-05-06 15:19:37 +08:00
|
|
|
|
"""优化后的图像处理方法,使用更高效的算法,添加反查重技术"""
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 设置随机种子
|
2025-04-26 15:53:44 +08:00
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed(seed)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
np.random.seed(seed)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# 根据微调强度设置参数 (保留变化因子等)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
if variation_strength == "low":
|
2025-05-06 15:03:03 +08:00
|
|
|
|
brightness_factor = random.uniform(0.97, 1.03)
|
|
|
|
|
|
contrast_factor = random.uniform(0.97, 1.03)
|
|
|
|
|
|
saturation_factor = random.uniform(0.97, 1.03)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
max_rotation = 0.5
|
2025-05-06 15:03:03 +08:00
|
|
|
|
border_size = random.randint(0, 1)
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# use_extra = random.random() < 0.3 and extra_effects #<-- 旧逻辑
|
2025-04-26 15:53:44 +08:00
|
|
|
|
elif variation_strength == "high":
|
2025-05-06 15:03:03 +08:00
|
|
|
|
brightness_factor = random.uniform(0.92, 1.08)
|
|
|
|
|
|
contrast_factor = random.uniform(0.92, 1.08)
|
|
|
|
|
|
saturation_factor = random.uniform(0.92, 1.08)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
max_rotation = 2.0
|
2025-05-06 15:03:03 +08:00
|
|
|
|
border_size = random.randint(0, 3)
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# use_extra = extra_effects #<-- 旧逻辑 (本身就是直接赋值)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
else: # medium
|
|
|
|
|
|
brightness_factor = random.uniform(0.95, 1.05)
|
|
|
|
|
|
contrast_factor = random.uniform(0.95, 1.05)
|
|
|
|
|
|
saturation_factor = random.uniform(0.95, 1.05)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
max_rotation = 1.0
|
2025-05-06 15:03:03 +08:00
|
|
|
|
border_size = random.randint(0, 2)
|
2025-05-08 14:22:30 +08:00
|
|
|
|
# use_extra = random.random() < 0.7 and extra_effects #<-- 旧逻辑
|
|
|
|
|
|
|
|
|
|
|
|
# --- FIX: 直接使用传入的 extra_effects 控制是否启用抗哈希和额外效果 ---
|
|
|
|
|
|
use_extra = extra_effects
|
|
|
|
|
|
# --- END FIX ---
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 调整图像为目标比例
|
2025-04-26 15:53:44 +08:00
|
|
|
|
width, height = image.size
|
|
|
|
|
|
current_ratio = width / height
|
|
|
|
|
|
target_ratio_value = target_ratio[0] / target_ratio[1]
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 调整大小
|
2025-04-26 15:53:44 +08:00
|
|
|
|
if current_ratio > target_ratio_value: # 图片较宽
|
2025-05-06 15:03:03 +08:00
|
|
|
|
new_height = 1200
|
2025-04-26 15:53:44 +08:00
|
|
|
|
new_width = int(new_height * current_ratio)
|
|
|
|
|
|
else: # 图片较高
|
2025-05-06 15:03:03 +08:00
|
|
|
|
new_width = 900
|
2025-04-26 15:53:44 +08:00
|
|
|
|
new_height = int(new_width / current_ratio)
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 高效调整尺寸
|
2025-04-26 15:53:44 +08:00
|
|
|
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 裁剪为目标比例
|
2025-04-26 15:53:44 +08:00
|
|
|
|
resized_width, resized_height = resized_image.size
|
2025-05-06 15:03:03 +08:00
|
|
|
|
if resized_width / resized_height > target_ratio_value:
|
2025-04-26 15:53:44 +08:00
|
|
|
|
crop_width = int(resized_height * target_ratio_value)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
max_offset = max(1, min(10, (resized_width - crop_width) // 10))
|
|
|
|
|
|
offset = random.randint(-max_offset, max_offset) if add_variation else 0
|
|
|
|
|
|
crop_x1 = max(0, min((resized_width - crop_width) // 2 + offset, resized_width - crop_width))
|
2025-04-26 15:53:44 +08:00
|
|
|
|
crop_x2 = crop_x1 + crop_width
|
|
|
|
|
|
result = resized_image.crop((crop_x1, 0, crop_x2, resized_height))
|
2025-05-06 15:03:03 +08:00
|
|
|
|
else:
|
2025-04-26 15:53:44 +08:00
|
|
|
|
crop_height = int(resized_width / target_ratio_value)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
max_offset = max(1, min(10, (resized_height - crop_height) // 10))
|
|
|
|
|
|
offset = random.randint(-max_offset, max_offset) if add_variation else 0
|
|
|
|
|
|
crop_y1 = max(0, min((resized_height - crop_height) // 2 + offset, resized_height - crop_height))
|
2025-04-26 15:53:44 +08:00
|
|
|
|
crop_y2 = crop_y1 + crop_height
|
|
|
|
|
|
result = resized_image.crop((0, crop_y1, resized_width, crop_y2))
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 如果不需要变化或是低强度且禁用额外效果
|
2025-05-06 15:19:37 +08:00
|
|
|
|
if not add_variation:
|
2025-05-06 16:52:03 +08:00
|
|
|
|
logger.info("add_variation=False,跳过所有变化和抗哈希处理。")
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 重置随机种子
|
2025-04-26 15:53:44 +08:00
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed()
|
2025-05-06 15:03:03 +08:00
|
|
|
|
np.random.seed()
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
|
|
|
|
|
# 清除元数据后返回
|
|
|
|
|
|
return self.strip_metadata(result)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 16:52:03 +08:00
|
|
|
|
logger.info(f"应用基础变化和抗哈希处理 (强度: {variation_strength}, 额外效果: {use_extra})")
|
2025-05-06 15:03:03 +08:00
|
|
|
|
processed_image = result.convert('RGB')
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 1. 亮度调整
|
|
|
|
|
|
if abs(brightness_factor - 1.0) > 0.01:
|
|
|
|
|
|
enhancer = ImageEnhance.Brightness(processed_image)
|
|
|
|
|
|
processed_image = enhancer.enhance(brightness_factor)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 2. 对比度调整
|
|
|
|
|
|
if abs(contrast_factor - 1.0) > 0.01:
|
|
|
|
|
|
enhancer = ImageEnhance.Contrast(processed_image)
|
|
|
|
|
|
processed_image = enhancer.enhance(contrast_factor)
|
|
|
|
|
|
|
|
|
|
|
|
# 3. 饱和度调整
|
|
|
|
|
|
if abs(saturation_factor - 1.0) > 0.01:
|
|
|
|
|
|
enhancer = ImageEnhance.Color(processed_image)
|
|
|
|
|
|
processed_image = enhancer.enhance(saturation_factor)
|
|
|
|
|
|
|
|
|
|
|
|
# 4. 旋转 (只在中高强度时应用)
|
|
|
|
|
|
if variation_strength != "low" and abs(max_rotation) > 0.1:
|
|
|
|
|
|
rotation_angle = random.uniform(-max_rotation, max_rotation)
|
|
|
|
|
|
if abs(rotation_angle) > 0.1: # 只有当角度足够大时才旋转
|
|
|
|
|
|
processed_image = processed_image.rotate(rotation_angle, resample=Image.BICUBIC, expand=False)
|
|
|
|
|
|
|
2025-05-06 16:52:03 +08:00
|
|
|
|
# 5. 应用抗哈希技术
|
2025-05-06 15:19:37 +08:00
|
|
|
|
if use_extra:
|
2025-05-06 16:52:03 +08:00
|
|
|
|
logger.debug("调用 optimize_anti_hash_methods...")
|
2025-05-06 15:49:31 +08:00
|
|
|
|
processed_image = self.optimize_anti_hash_methods(processed_image, variation_strength)
|
2025-05-06 16:52:03 +08:00
|
|
|
|
else:
|
|
|
|
|
|
logger.info("use_extra=False,跳过 optimize_anti_hash_methods。")
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 16:52:03 +08:00
|
|
|
|
# 应用模糊/锐化/边框等额外效果 (如果 use_extra 为 True)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
if use_extra:
|
2025-05-06 16:52:03 +08:00
|
|
|
|
logger.debug("应用额外效果 (模糊/锐化/边框)...")
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 根据强度决定是否应用特定效果
|
|
|
|
|
|
apply_sharpen = random.random() < 0.4
|
|
|
|
|
|
apply_blur = not apply_sharpen and random.random() < 0.3
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 锐化
|
|
|
|
|
|
if apply_sharpen:
|
|
|
|
|
|
enhancer = ImageEnhance.Sharpness(processed_image)
|
|
|
|
|
|
sharpness = 1.2 if variation_strength == "high" else 1.1
|
|
|
|
|
|
processed_image = enhancer.enhance(sharpness)
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 模糊
|
|
|
|
|
|
elif apply_blur:
|
|
|
|
|
|
radius = 0.7 if variation_strength == "high" else 0.4
|
|
|
|
|
|
processed_image = processed_image.filter(ImageFilter.GaussianBlur(radius=radius))
|
2025-04-26 15:53:44 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 边框处理 (在图像不太小的情况下)
|
|
|
|
|
|
if border_size > 0 and min(processed_image.size) > 300:
|
|
|
|
|
|
border_color = (
|
|
|
|
|
|
random.randint(0, 5),
|
|
|
|
|
|
random.randint(0, 5),
|
|
|
|
|
|
random.randint(0, 5)
|
|
|
|
|
|
)
|
|
|
|
|
|
w, h = processed_image.size
|
|
|
|
|
|
bordered = Image.new('RGB', (w + border_size*2, h + border_size*2), border_color)
|
|
|
|
|
|
bordered.paste(processed_image, (border_size, border_size))
|
2025-05-06 16:52:03 +08:00
|
|
|
|
|
|
|
|
|
|
logger.debug("额外效果应用完成。")
|
|
|
|
|
|
else:
|
|
|
|
|
|
logger.info("use_extra=False,跳过额外效果。")
|
2025-05-06 15:03:03 +08:00
|
|
|
|
|
2025-05-06 16:52:03 +08:00
|
|
|
|
# **关键:确保在所有修改之后调用修复后的 strip_metadata**
|
|
|
|
|
|
logger.debug("最后调用 strip_metadata 清除元数据。")
|
|
|
|
|
|
final_image = self.strip_metadata(processed_image)
|
2025-05-06 15:19:37 +08:00
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 重置随机种子
|
|
|
|
|
|
if seed is not None:
|
|
|
|
|
|
random.seed()
|
|
|
|
|
|
np.random.seed()
|
2025-05-06 16:52:03 +08:00
|
|
|
|
logger.debug("随机种子已重置。")
|
2025-05-06 15:03:03 +08:00
|
|
|
|
|
2025-05-06 16:52:03 +08:00
|
|
|
|
logger.info(f"图像处理完成 (强度: {variation_strength})")
|
|
|
|
|
|
return final_image
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
|
|
|
|
|
def process_poster_for_notes(
|
|
|
|
|
|
run_id: str,
|
|
|
|
|
|
topic_index: int,
|
|
|
|
|
|
variant_index: int,
|
|
|
|
|
|
poster_image_path: str,
|
|
|
|
|
|
poster_metadata_path: str,
|
|
|
|
|
|
source_image_dir: str,
|
|
|
|
|
|
num_additional_images: int,
|
|
|
|
|
|
output_handler: OutputHandler,
|
|
|
|
|
|
output_filename_template: str = "note_{index}.jpg"
|
|
|
|
|
|
) -> List[str]:
|
|
|
|
|
|
"""
|
|
|
|
|
|
处理海报并创建笔记图像
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
run_id: 运行ID
|
|
|
|
|
|
topic_index: 主题索引
|
|
|
|
|
|
variant_index: 变体索引
|
|
|
|
|
|
poster_image_path: 海报图像路径
|
|
|
|
|
|
poster_metadata_path: 海报元数据路径
|
|
|
|
|
|
source_image_dir: 源图像目录
|
|
|
|
|
|
num_additional_images: 要使用的额外图像数量
|
|
|
|
|
|
output_handler: 输出处理器
|
|
|
|
|
|
output_filename_template: 输出文件名模板
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
List[str]: 保存的笔记图像路径列表
|
|
|
|
|
|
"""
|
|
|
|
|
|
logger.info(f"开始为海报创建笔记图像: {poster_image_path}")
|
|
|
|
|
|
|
|
|
|
|
|
# 验证输入
|
|
|
|
|
|
if not os.path.exists(poster_image_path):
|
|
|
|
|
|
logger.error(f"海报图像不存在: {poster_image_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
# 创建处理器实例并处理
|
|
|
|
|
|
creator = PosterNotesCreator(output_handler)
|
|
|
|
|
|
return creator.create_notes_images(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
poster_image_path,
|
|
|
|
|
|
poster_metadata_path,
|
|
|
|
|
|
source_image_dir,
|
|
|
|
|
|
num_additional_images,
|
|
|
|
|
|
output_filename_template
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def select_additional_images(
|
|
|
|
|
|
run_id: str,
|
|
|
|
|
|
topic_index: int,
|
|
|
|
|
|
variant_index: int,
|
|
|
|
|
|
poster_metadata_path: str,
|
|
|
|
|
|
source_image_dir: str,
|
|
|
|
|
|
num_additional_images: int,
|
|
|
|
|
|
output_handler: OutputHandler,
|
2025-04-26 15:53:44 +08:00
|
|
|
|
output_filename_template: str = "additional_{index}.jpg",
|
|
|
|
|
|
variation_strength: str = "medium",
|
2025-05-09 14:00:46 +08:00
|
|
|
|
extra_effects: bool = True,
|
2025-05-09 16:03:23 +08:00
|
|
|
|
collage_style: str = "grid_2x2" # 默认使用grid风格
|
2025-04-26 14:53:54 +08:00
|
|
|
|
) -> List[str]:
|
|
|
|
|
|
"""
|
2025-05-09 16:03:23 +08:00
|
|
|
|
选择未被海报使用的图像作为额外配图,创建2x2网格拼接图像
|
2025-05-09 14:00:46 +08:00
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
run_id: 运行ID
|
|
|
|
|
|
topic_index: 主题索引
|
|
|
|
|
|
variant_index: 变体索引
|
|
|
|
|
|
poster_metadata_path: 海报元数据路径
|
|
|
|
|
|
source_image_dir: 源图像目录
|
|
|
|
|
|
num_additional_images: 要使用的额外图像数量
|
|
|
|
|
|
output_handler: 输出处理器
|
|
|
|
|
|
output_filename_template: 输出文件名模板
|
|
|
|
|
|
variation_strength: 变化强度
|
|
|
|
|
|
extra_effects: 是否应用额外效果
|
2025-05-09 16:03:23 +08:00
|
|
|
|
collage_style: 拼图风格,固定为 'grid'
|
2025-05-09 14:00:46 +08:00
|
|
|
|
|
|
|
|
|
|
Returns:
|
2025-05-09 15:40:41 +08:00
|
|
|
|
List[str]: 保存的图像路径列表
|
2025-04-26 14:53:54 +08:00
|
|
|
|
"""
|
2025-05-09 16:03:23 +08:00
|
|
|
|
logger.info(f"开始为主题 {topic_index} 变体 {variant_index} 选择额外配图(2x2网格风格)")
|
2025-04-26 14:53:54 +08:00
|
|
|
|
|
|
|
|
|
|
# 验证输入
|
|
|
|
|
|
if not os.path.exists(poster_metadata_path):
|
|
|
|
|
|
logger.error(f"海报元数据不存在: {poster_metadata_path}")
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
2025-05-06 15:03:03 +08:00
|
|
|
|
# 创建处理器实例
|
2025-04-26 14:53:54 +08:00
|
|
|
|
creator = PosterNotesCreator(output_handler)
|
2025-05-06 15:03:03 +08:00
|
|
|
|
|
2025-05-09 15:40:41 +08:00
|
|
|
|
# 使用拼图处理图像
|
2025-04-26 14:53:54 +08:00
|
|
|
|
return creator.create_additional_images(
|
|
|
|
|
|
run_id,
|
|
|
|
|
|
topic_index,
|
|
|
|
|
|
variant_index,
|
|
|
|
|
|
poster_metadata_path,
|
|
|
|
|
|
source_image_dir,
|
|
|
|
|
|
num_additional_images,
|
2025-04-26 15:53:44 +08:00
|
|
|
|
output_filename_template,
|
|
|
|
|
|
variation_strength,
|
2025-05-09 14:00:46 +08:00
|
|
|
|
extra_effects,
|
|
|
|
|
|
collage_style
|
2025-05-09 15:40:41 +08:00
|
|
|
|
)
|