TravelContentCreator/domain/aigc/engines/content_generate_v2.py

421 lines
15 KiB
Python
Raw Normal View History

2025-12-08 14:58:35 +08:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
内容生成引擎 V2
- 不访问数据库接收完整数据
- 使用 PromptRegistry 管理 prompt
- 统一依赖注入
"""
import logging
from typing import Dict, Any, Optional, List
2025-12-08 14:58:35 +08:00
from .base import BaseAIGCEngine, EngineResult
logger = logging.getLogger(__name__)
class ContentGenerateEngineV2(BaseAIGCEngine):
"""
内容生成引擎 V2
改进:
1. 不访问数据库所有数据由调用方传入
2. 使用 PromptRegistry 管理 prompt
3. 接收完整对象而非 ID
"""
engine_id = "content_generate"
engine_name = "内容生成"
version = "2.1.0"
description = "根据选题信息生成小红书风格的营销文案"
2025-12-08 14:58:35 +08:00
def __init__(self):
super().__init__()
self._prompt_registry = None
self._reference_manager = None
2025-12-08 14:58:35 +08:00
def get_param_schema(self) -> Dict[str, Any]:
"""
定义参数结构
V2.2: 合并 scenic_spot product subject
"""
2025-12-08 14:58:35 +08:00
return {
# 选题信息
"topic": {
"type": "object",
"required": True,
"desc": "选题信息 {index, date, title, subject_name, product_name, style, audience, ...}",
2025-12-08 14:58:35 +08:00
},
# 主体信息 (景区+产品合并)
"subject": {
"type": "object",
"required": False,
"desc": "主体信息 {id, name, type, description, location, products: [...]}",
},
# 兼容旧字段
2025-12-08 14:58:35 +08:00
"scenic_spot": {
"type": "object",
"required": False,
"desc": "[兼容] 景区信息,建议使用 subject",
2025-12-08 14:58:35 +08:00
},
"product": {
"type": "object",
"required": False,
"desc": "[兼容] 产品信息,建议使用 subject.products",
2025-12-08 14:58:35 +08:00
},
2025-12-08 14:58:35 +08:00
"style": {
"type": "object",
"required": False,
"desc": "风格信息对象 {id, name}",
2025-12-08 14:58:35 +08:00
},
"audience": {
"type": "object",
"required": False,
"desc": "受众信息对象 {id, name}",
},
# 热点信息
"hot_topics": {
"type": "object",
"required": False,
"desc": "热点信息 {events: [], festivals: [], trending: []}",
2025-12-08 14:58:35 +08:00
},
# 参考内容
"reference": {
"type": "object",
2025-12-08 14:58:35 +08:00
"required": False,
"desc": "参考内容 {mode: 'none'/'reference'/'rewrite', title, content}. reference=参考风格原创内容, rewrite=保留框架换主体",
2025-12-08 14:58:35 +08:00
},
# 审核选项
"enable_judge": {
"type": "bool",
"required": False,
"default": True,
"desc": "是否启用内容审核",
},
# Prompt 版本控制
"prompt_version": {
"type": "str",
"required": False,
"default": "latest",
"desc": "使用的 prompt 版本",
},
}
def estimate_duration(self, params: Dict[str, Any]) -> int:
"""预估执行时间"""
enable_judge = params.get('enable_judge', True)
return 30 if enable_judge else 20
async def execute(self, params: Dict[str, Any], task_id: str = None) -> EngineResult:
"""执行内容生成"""
try:
self.log("开始生成内容 (V2)")
self.set_progress(task_id, 10)
# 提取参数
topic = params.get('topic', {})
# 主体信息 (支持新旧两种格式)
subject = params.get('subject')
2025-12-08 14:58:35 +08:00
scenic_spot = params.get('scenic_spot')
product = params.get('product')
# 兼容处理: 如果没有 subject从 scenic_spot + product 构建
if not subject and scenic_spot:
subject = {
**scenic_spot,
'type': scenic_spot.get('type', 'scenic_spot'),
'products': [product] if product else []
}
2025-12-08 14:58:35 +08:00
style = params.get('style')
audience = params.get('audience')
hot_topics = params.get('hot_topics')
reference = params.get('reference')
2025-12-08 14:58:35 +08:00
enable_judge = params.get('enable_judge', True)
prompt_version = params.get('prompt_version', 'latest')
self.set_progress(task_id, 20)
# 获取 PromptRegistry
prompt_registry = self._get_prompt_registry()
# 从 subject 提取产品信息
current_product = None
if subject and subject.get('products'):
current_product = subject['products'][0]
# 如果没有用户指定的参考内容,加载内置参考文献库
use_builtin_examples = not reference or reference.get('mode') == 'none'
2025-12-08 14:58:35 +08:00
# 构建 prompt 上下文
context = {
'style_content': self._format_style(style, topic),
'demand_content': self._format_audience(audience, topic),
'object_content': self._format_subject(subject, topic),
'product_content': self._format_product(current_product),
'hot_topics': hot_topics,
'reference': reference,
# 内置参考文献 (仅在无用户指定参考时使用)
'title_examples': self._get_title_examples(20) if use_builtin_examples else None,
'content_examples': self._get_content_examples(3) if use_builtin_examples else None,
2025-12-08 14:58:35 +08:00
}
# 渲染 prompt
system_prompt, user_prompt = prompt_registry.render(
'content_generate',
context=context,
version=prompt_version
)
self.set_progress(task_id, 30)
# 获取模型参数
prompt_config = prompt_registry.get('content_generate', prompt_version)
model_params = prompt_config.get_model_params()
# 调用 LLM 生成内容
self.log("调用 LLM 生成内容...")
raw_result, input_tokens, output_tokens, time_cost = await self.llm.generate(
system_prompt=system_prompt,
user_prompt=user_prompt,
**model_params
)
self.set_progress(task_id, 60)
# 解析结果
content = self._parse_content(raw_result)
if not content:
return EngineResult(
success=False,
error="内容生成失败,无法解析结果",
error_code="PARSE_ERROR"
)
# 内容审核
final_content = content
judge_result = None
if enable_judge:
self.set_progress(task_id, 70)
self.log("执行内容审核...")
judge_result = await self._judge_content(
content,
scenic_spot,
product,
prompt_registry,
prompt_version
)
if judge_result and judge_result.get('success'):
final_content = {
'title': judge_result.get('title', content.get('title')),
'content': judge_result.get('content', content.get('content')),
'tag': content.get('tag', ''),
}
self.set_progress(task_id, 100)
return EngineResult(
success=True,
data={
"content": final_content,
"original_content": content,
"topic": topic,
"judged": enable_judge and judge_result is not None,
"judge_analysis": judge_result.get('analysis') if judge_result else None,
},
metadata={
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"time_cost": time_cost,
"prompt_version": prompt_version,
}
)
except Exception as e:
self.log(f"内容生成异常: {e}", level='error')
return EngineResult(
success=False,
error=str(e),
error_code="EXECUTION_ERROR"
)
def _get_prompt_registry(self):
"""获取 PromptRegistry"""
if self._prompt_registry:
return self._prompt_registry
from domain.prompt import PromptRegistry
self._prompt_registry = PromptRegistry('prompts')
return self._prompt_registry
def _get_reference_manager(self):
"""获取 ReferenceManager"""
if self._reference_manager is None:
from domain.prompt.reference_manager import get_reference_manager
self._reference_manager = get_reference_manager()
return self._reference_manager
def _get_title_examples(self, audience_id: str = None, style_id: str = None, count: int = 20) -> List[str]:
"""获取标题参考格式 (智能匹配 + 随机抽取)"""
manager = self._get_reference_manager()
return manager.get_titles(audience_id=audience_id, style_id=style_id, count=count)
def _get_content_examples(self, audience_id: str = None, style_id: str = None, count: int = 3) -> List[str]:
"""获取正文范文参考 (智能匹配 + 随机抽取)"""
manager = self._get_reference_manager()
return manager.get_contents(audience_id=audience_id, style_id=style_id, count=count)
2025-12-08 14:58:35 +08:00
def _format_style(self, style: Optional[Dict], topic: Dict) -> str:
"""格式化风格信息"""
if style:
name = style.get('name', style.get('styleName', ''))
desc = style.get('description', '')
return f"{name}\n{desc}" if desc else name
# 从 topic 中获取
return topic.get('style', '')
def _format_audience(self, audience: Optional[Dict], topic: Dict) -> str:
"""格式化受众信息"""
if audience:
name = audience.get('name', audience.get('audienceName', ''))
desc = audience.get('description', '')
return f"{name}\n{desc}" if desc else name
return topic.get('targetAudience', '')
def _format_subject(self, subject: Optional[Dict], topic: Dict) -> str:
"""格式化主体信息 (景区/酒店等)"""
if subject:
name = subject.get('name', '')
desc = subject.get('description', '')
location = subject.get('location', '')
highlights = subject.get('highlights', [])
2025-12-08 14:58:35 +08:00
parts = [f"名称: {name}"]
2025-12-08 14:58:35 +08:00
if location:
parts.append(f"位置: {location}")
if highlights:
parts.append(f"亮点: {', '.join(highlights)}")
2025-12-08 14:58:35 +08:00
if desc:
parts.append(f"描述: {desc}")
2025-12-08 14:58:35 +08:00
return "\n".join(parts)
# 兼容旧字段
return topic.get('object', topic.get('subject_name', ''))
def _format_scenic_spot(self, scenic_spot: Optional[Dict], topic: Dict) -> str:
"""[兼容] 格式化景区信息"""
return self._format_subject(scenic_spot, topic)
2025-12-08 14:58:35 +08:00
def _format_product(self, product: Optional[Dict]) -> str:
"""格式化产品信息"""
if not product:
return ""
name = product.get('name', product.get('productName', ''))
price = product.get('price', '')
desc = product.get('description', product.get('detailedDescription', ''))
parts = [name]
if price:
parts.append(f"价格: {price}")
if desc:
parts.append(desc)
return "\n".join(parts)
def _parse_content(self, raw_result: str) -> Optional[Dict[str, Any]]:
"""解析 LLM 返回的内容"""
import json
import re
# 尝试提取 JSON
json_match = re.search(r'\{[\s\S]*\}', raw_result)
if json_match:
try:
return json.loads(json_match.group())
except json.JSONDecodeError:
pass
# 尝试 json_repair
try:
import json_repair
return json_repair.loads(raw_result)
except:
pass
self.log("无法解析内容结果", level='error')
return None
async def _judge_content(self, content: Dict,
scenic_spot: Optional[Dict],
product: Optional[Dict],
prompt_registry,
prompt_version: str) -> Optional[Dict]:
"""执行内容审核"""
try:
# 构建产品资料
product_info_parts = []
if scenic_spot:
product_info_parts.append(f"景区: {scenic_spot.get('name', '')}")
if scenic_spot.get('description'):
product_info_parts.append(scenic_spot['description'])
if product:
product_info_parts.append(f"产品: {product.get('name', '')}")
if product.get('price'):
product_info_parts.append(f"价格: {product['price']}")
if product.get('description'):
product_info_parts.append(product['description'])
product_info = "\n".join(product_info_parts)
# 渲染审核 prompt
context = {
'product_info': product_info,
'title_to_judge': content.get('title', ''),
'content_to_judge': content.get('content', ''),
}
system_prompt, user_prompt = prompt_registry.render(
'content_judge',
context=context,
version=prompt_version
)
# 获取模型参数
judge_config = prompt_registry.get('content_judge', prompt_version)
model_params = judge_config.get_model_params()
# 调用 LLM
raw_result, _, _, _ = await self.llm.generate(
system_prompt=system_prompt,
user_prompt=user_prompt,
**model_params
)
# 解析结果
result = self._parse_content(raw_result)
if result:
result['success'] = True
return result
except Exception as e:
self.log(f"内容审核失败: {e}", level='warning')
return None