TravelContentCreator/tweet/topic_generator.py

149 lines
5.3 KiB
Python
Raw Normal View History

2025-07-08 18:24:23 +08:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
选题生成模块
"""
import logging
2025-07-11 16:54:07 +08:00
from typing import Dict, Any, List, Optional, Tuple
2025-07-08 18:24:23 +08:00
from core.ai import AIAgent
2025-07-10 17:01:39 +08:00
from core.config import ConfigManager, GenerateTopicConfig
2025-07-08 18:24:23 +08:00
from utils.prompts import TopicPromptBuilder
2025-07-10 17:01:39 +08:00
from utils.file_io import OutputManager, process_llm_json_text
from .topic_parser import TopicParser
2025-07-08 18:24:23 +08:00
logger = logging.getLogger(__name__)
class TopicGenerator:
"""
2025-07-10 17:01:39 +08:00
选题生成器
负责生成旅游相关的选题
"""
2025-07-08 18:24:23 +08:00
def __init__(self, ai_agent: AIAgent, config_manager: ConfigManager, output_manager: OutputManager):
2025-07-08 18:24:23 +08:00
"""
2025-07-10 17:01:39 +08:00
初始化选题生成器
2025-07-08 18:24:23 +08:00
Args:
2025-07-10 17:01:39 +08:00
ai_agent: AI代理
config_manager: 配置管理器
output_manager: 输出管理器
2025-07-08 18:24:23 +08:00
"""
self.ai_agent = ai_agent
2025-07-10 17:01:39 +08:00
self.config_manager = config_manager
self.config = config_manager.get_config('topic_gen', GenerateTopicConfig)
2025-07-08 18:24:23 +08:00
self.output_manager = output_manager
self.prompt_builder = TopicPromptBuilder(config_manager)
2025-07-10 17:01:39 +08:00
self.parser = TopicParser()
async def generate_topics(self) -> Optional[List[Dict[str, Any]]]:
2025-07-08 18:24:23 +08:00
"""
执行完整的选题生成流程构建提示 -> 调用AI -> 解析结果 -> 保存产物
"""
logger.info("开始执行选题生成流程...")
# 1. 构建提示
system_prompt = self.prompt_builder.get_system_prompt()
user_prompt = self.prompt_builder.build_user_prompt(
num_topics=self.config.topic.num,
month=self.config.topic.date
)
self.output_manager.save_text(system_prompt, "topic_system_prompt.txt")
self.output_manager.save_text(user_prompt, "topic_user_prompt.txt")
2025-07-08 18:24:23 +08:00
# 获取模型参数
model_params = {}
if hasattr(self.config, 'model') and isinstance(self.config.model, dict):
model_params = {
'temperature': self.config.model.get('temperature'),
'top_p': self.config.model.get('top_p'),
'presence_penalty': self.config.model.get('presence_penalty')
}
# 移除None值
model_params = {k: v for k, v in model_params.items() if v is not None}
2025-07-08 18:24:23 +08:00
# 2. 调用AI生成
try:
raw_result, _, _, _ = await self.ai_agent.generate_text(
system_prompt=system_prompt,
user_prompt=user_prompt,
use_stream=True, # 选题生成通常不需要流式输出
stage="选题生成",
**model_params
2025-07-08 18:24:23 +08:00
)
self.output_manager.save_text(raw_result, "topics_raw_response.txt")
except Exception as e:
logger.critical(f"AI调用失败无法生成选题: {e}", exc_info=True)
return None
# 3. 解析结果
topics = self.parser.parse(raw_result)
2025-07-08 18:24:23 +08:00
if not topics:
logger.error("未能从AI响应中解析出任何有效选题")
return None
2025-07-10 17:01:39 +08:00
# 4. 保存结果
self.output_manager.save_json(topics, "topics.json")
logger.info(f"成功生成并保存 {len(topics)} 个选题")
2025-07-08 18:24:23 +08:00
return topics
2025-07-11 16:54:07 +08:00
async def generate_topics_with_prompt(self, system_prompt: str, user_prompt: str) -> Optional[List[Dict[str, Any]]]:
"""
使用预构建的提示词生成选题
Args:
system_prompt: 已构建好的系统提示词
user_prompt: 已构建好的用户提示词
Returns:
生成的选题列表如果失败则返回None
"""
logger.info("使用预构建提示词开始执行选题生成流程...")
# 保存提示以供调试
self.output_manager.save_text(system_prompt, "topic_system_prompt.txt")
self.output_manager.save_text(user_prompt, "topic_user_prompt.txt")
# 获取模型参数
model_params = {}
if hasattr(self.config, 'model') and isinstance(self.config.model, dict):
model_params = {
'temperature': self.config.model.get('temperature'),
'top_p': self.config.model.get('top_p'),
'presence_penalty': self.config.model.get('presence_penalty')
}
# 移除None值
model_params = {k: v for k, v in model_params.items() if v is not None}
# 调用AI生成
try:
raw_result, _, _, _ = await self.ai_agent.generate_text(
system_prompt=system_prompt,
user_prompt=user_prompt,
use_stream=True,
stage="选题生成",
**model_params
)
self.output_manager.save_text(raw_result, "topics_raw_response.txt")
except Exception as e:
logger.critical(f"AI调用失败无法生成选题: {e}", exc_info=True)
return None
# 解析结果
topics = self.parser.parse(raw_result)
if not topics:
logger.error("未能从AI响应中解析出任何有效选题")
return None
# 保存结果
self.output_manager.save_json(topics, "topics.json")
logger.info(f"成功生成并保存 {len(topics)} 个选题")
return topics
2025-07-08 18:24:23 +08:00
2025-07-10 17:01:39 +08:00