增大了hash干扰强度

This commit is contained in:
jinye_huang 2025-05-06 16:34:46 +08:00
parent 0a1ba3e980
commit 219fcbbd57

View File

@ -11,6 +11,15 @@ from PIL import ImageEnhance, ImageFilter
from .output_handler import OutputHandler
import io
# 尝试导入 scipy如果失败则标记
try:
from scipy.fftpack import dct, idct
SCIPY_AVAILABLE = True
except ImportError:
SCIPY_AVAILABLE = False
dct = None
idct = None
logger = logging.getLogger(__name__)
class PosterNotesCreator:
@ -348,10 +357,98 @@ class PosterNotesCreator:
logger.error(traceback.format_exc())
return None
def add_dct_noise(self, image: Image.Image, intensity: float = 0.1, block_size: int = 8) -> Image.Image:
"""
在DCT域添加噪声以对抗pHash (需要Scipy)
Args:
image: 输入图像 (建议传入灰度图或处理亮度通道)
intensity: 噪声强度 (0-1)
block_size: DCT块大小 (通常为8)
Returns:
添加噪声后的图像
"""
if not SCIPY_AVAILABLE:
logger.warning("Scipy 未安装无法执行DCT噪声注入。请运行 'pip install scipy'")
# 可以选择返回原图,或执行一个简化的备用方案
# 这里我们返回原图
return image
try:
# 确保是灰度图或提取亮度通道 (这里以灰度为例)
if image.mode != 'L':
# 如果是彩色图,可以在 Y 通道 (亮度) 操作
# 为了简化,我们先转为灰度处理
gray_image = image.convert('L')
else:
gray_image = image
img_array = np.array(gray_image, dtype=float)
h, w = img_array.shape
# 确保尺寸是块大小的倍数
h_pad = (block_size - h % block_size) % block_size
w_pad = (block_size - w % block_size) % block_size
if h_pad != 0 or w_pad != 0:
img_array = np.pad(img_array, ((0, h_pad), (0, w_pad)), mode='reflect')
padded_h, padded_w = img_array.shape
else:
padded_h, padded_w = h, w
# 分块处理
for y in range(0, padded_h, block_size):
for x in range(0, padded_w, block_size):
block = img_array[y:y+block_size, x:x+block_size]
# 执行2D DCT
dct_block = dct(dct(block.T, norm='ortho').T, norm='ortho')
# 在非DC系数上添加噪声 (跳过 dct_block[0, 0])
# 噪声强度与系数幅度相关,避免在小系数上加过大噪声
noise = np.random.randn(block_size, block_size) * intensity * np.abs(dct_block)
# noise = np.random.uniform(-intensity*50, intensity*50, (block_size, block_size))
noise[0, 0] = 0 # 不改变DC系数
# 将噪声添加到DCT系数
noisy_dct_block = dct_block + noise
# 执行2D IDCT
idct_block = idct(idct(noisy_dct_block.T, norm='ortho').T, norm='ortho')
# 将处理后的块放回图像数组
img_array[y:y+block_size, x:x+block_size] = idct_block
# 裁剪回原始尺寸 (如果有填充)
if h_pad != 0 or w_pad != 0:
img_array = img_array[:h, :w]
# 裁剪像素值并转换类型
img_array = np.clip(img_array, 0, 255)
modified_gray = Image.fromarray(img_array.astype(np.uint8))
# 如果原图是彩色,将修改后的亮度通道合并回去
if image.mode == 'RGB' and gray_image is not image:
# 注意:简单替换亮度通道可能效果不好,混合通常更好
# 这里用混合的方式
blend_factor = 0.3 # 控制混合强度
r, g, b = image.split()
r = Image.blend(r, modified_gray, blend_factor)
g = Image.blend(g, modified_gray, blend_factor)
b = Image.blend(b, modified_gray, blend_factor)
return Image.merge('RGB', (r, g, b))
else:
# 如果原图是灰度或处理失败,返回修改后的灰度图
return modified_gray
except Exception as e:
logger.error(f"DCT噪声注入出错: {e}")
return image # 出错时返回原图
def add_phash_noise(self, image: Image.Image, intensity: float = 0.05) -> Image.Image:
"""
添加扰动以对抗感知哈希算法(pHash)
通过在频域添加低频扰动实现
在调用基于 Scipy DCT 噪声注入方法
Args:
image: 输入图像
@ -360,238 +457,126 @@ class PosterNotesCreator:
Returns:
添加扰动后的图像
"""
# 灰度化处理
gray_image = image.convert('L')
width, height = gray_image.size
# 确保宽高是8的倍数(DCT通常用8x8块)
new_width = (width // 8) * 8
new_height = (height // 8) * 8
if new_width != width or new_height != height:
gray_image = gray_image.resize((new_width, new_height))
# 转为numpy数组
img_array = np.array(gray_image)
# 简化版DCT域扰动
# 分块处理图像
for y in range(0, new_height, 8):
for x in range(0, new_width, 8):
block = img_array[y:y+8, x:x+8].astype(float)
# 简单DCT - 对块应用频域变化
# 这里使用简单方法模拟DCT效果
# 真正的DCT需要使用scipy.fftpack
avg = np.mean(block)
# 修改低频区块(除直流分量外)
noise_value = random.uniform(-intensity * 10, intensity * 10)
# 扰动左上角的低频系数(类似于DCT中的低频区域)
block[1:3, 1:3] += noise_value
# 应用回原图
img_array[y:y+8, x:x+8] = np.clip(block, 0, 255)
# 转回PIL图像
modified_image = Image.fromarray(img_array.astype(np.uint8))
# 调整回原始大小
if new_width != width or new_height != height:
modified_image = modified_image.resize((width, height), Image.LANCZOS)
# 将修改后的灰度通道应用到原彩色图像
if image.mode == 'RGB':
r, g, b = image.split()
# 混合原始图像与修改过的灰度图
blend_factor = 0.2 # 混合强度
r = Image.blend(r, modified_image, blend_factor)
g = Image.blend(g, modified_image, blend_factor)
b = Image.blend(b, modified_image, blend_factor)
return Image.merge('RGB', (r, g, b))
else:
return modified_image
def perturb_color_histogram(self, image: Image.Image, strength: float = 0.03) -> Image.Image:
"""
扰动图像的颜色直方图对抗基于颜色统计的图像匹配
Args:
image: 输入图像
strength: 扰动强度(0-1)
Returns:
处理后的图像
"""
# 确保为RGB模式
if image.mode != 'RGB':
image = image.convert('RGB')
# 转为numpy数组
img_array = np.array(image)
height, width, channels = img_array.shape
# 对每个通道分别处理
for channel in range(channels):
# 计算当前通道的直方图
hist, _ = np.histogram(img_array[:,:,channel].flatten(), bins=64, range=(0, 256))
# 找出主要颜色区间 (频率高的区间)
threshold = np.percentile(hist, 70) # 取前30%的颜色块
significant_bins = np.where(hist > threshold)[0]
if len(significant_bins) > 0:
for bin_idx in significant_bins:
# 计算当前bin对应的颜色范围
bin_width = 256 // 64
color_low = bin_idx * bin_width
color_high = (bin_idx + 1) * bin_width
# 创建颜色范围掩码
mask = (img_array[:,:,channel] >= color_low) & (img_array[:,:,channel] < color_high)
if np.any(mask):
# 生成随机偏移值
offset = int(strength * bin_width * (random.random() - 0.5) * 2)
# 应用偏移确保在0-255范围内
img_array[:,:,channel][mask] = np.clip(
img_array[:,:,channel][mask] + offset, 0, 255).astype(np.uint8)
# 转回PIL图像
return Image.fromarray(img_array)
def strip_metadata(self, image: Image.Image) -> Image.Image:
"""
移除图像中的所有元数据
Args:
image: 输入图像
Returns:
无元数据的图像
"""
# 创建无元数据的副本
data = io.BytesIO()
image.save(data, format=image.format if image.format else 'PNG')
return Image.open(data)
return self.add_dct_noise(image, intensity=intensity)
def optimize_anti_hash_methods(self, image: Image.Image, strength: str = "medium") -> Image.Image:
"""
综合优化的哈希对抗方法针对性处理aHashpHash和dHash
Args:
image: 输入图像
strength: 处理强度 - "low", "medium", "high"
Returns:
处理后的图像
综合优化的哈希对抗方法强度已增加
"""
# 根据强度设置参数
# 根据强度设置参数 (显著增加 high 强度)
if strength == "low":
ahash_intensity = 0.03
phash_intensity = 0.04
phash_intensity = 0.05 # 基础DCT噪声强度
dhash_intensity = 0.03
region_flip_prob = 0.3
num_ahash_blocks = random.randint(8, 15)
num_dhash_lines = random.randint(6, 10)
elif strength == "high":
ahash_intensity = 0.09
phash_intensity = 0.08
dhash_intensity = 0.09
ahash_intensity = 0.18 # 大幅增加
phash_intensity = 0.15 # 大幅增加
dhash_intensity = 0.18 # 大幅增加
region_flip_prob = 0.7 # 更大概率翻转
num_ahash_blocks = random.randint(20, 35) # 更多块
num_dhash_lines = random.randint(15, 25) # 更多线
else: # medium
ahash_intensity = 0.06
phash_intensity = 0.06
dhash_intensity = 0.06
ahash_intensity = 0.08 # 增加
phash_intensity = 0.08 # 增加
dhash_intensity = 0.08 # 增加
region_flip_prob = 0.5
num_ahash_blocks = random.randint(12, 25)
num_dhash_lines = random.randint(10, 18)
# 1. 针对aHash (平均哈希)的处理 - 专注于整体亮度变化
# aHash对整体亮度敏感创建局部亮度变化可有效对抗
img_array = np.array(image)
# 1. 针对aHash (平均哈希)的处理 - 强度已增加
img_array = np.array(image, dtype=np.int16)
h, w = img_array.shape[0], img_array.shape[1]
# 创建10-20个随机块并调整其亮度
num_blocks = random.randint(10, 20)
for _ in range(num_blocks):
# 随机选择块的位置和大小
# num_ahash_blocks = random.randint(10, 20)
for _ in range(num_ahash_blocks):
block_w = random.randint(w//20, w//10)
block_h = random.randint(h//20, h//10)
x = random.randint(0, w - block_w)
y = random.randint(0, h - block_h)
# 随机调整块的亮度
delta = int(random.uniform(-25, 25) * ahash_intensity)
if len(img_array.shape) == 3: # 彩色图像
img_array[y:y+block_h, x:x+block_w, :] = np.clip(
img_array[y:y+block_h, x:x+block_w, :] + delta, 0, 255)
else: # 灰度图像
img_array[y:y+block_h, x:x+block_w] = np.clip(
img_array[y:y+block_h, x:x+block_w] + delta, 0, 255)
# 转回PIL图像
delta = int(random.uniform(-35, 35) * ahash_intensity) # 增加delta范围
block = img_array[y:y+block_h, x:x+block_w]
img_array[y:y+block_h, x:x+block_w] = np.clip(block + delta, 0, 255)
image = Image.fromarray(img_array.astype(np.uint8))
# 2. 调用现有的pHash对抗方法
# 2. 调用强化的pHash对抗方法
image = self.add_phash_noise(image, intensity=phash_intensity)
# 3. 针对dHash (差值哈希)的处理 - 添加细微梯度扰动
# dHash对相邻像素梯度敏感添加小梯度干扰非常有效
img_array = np.array(image)
# 3. 针对dHash (差值哈希)的处理 - 强度已增加
img_array = np.array(image, dtype=np.int16)
h, w = img_array.shape[0], img_array.shape[1]
# 计算图像尺寸并创建掩码
mask = np.zeros_like(img_array, dtype=bool)
grid_size = 8 # dHash通常是8x8
# 在图像中选择8-12条边缘线进行干扰
num_lines = random.randint(8, 12)
for _ in range(num_lines):
# 随机决定是水平线还是垂直线
if random.random() < 0.5: # 水平线
# num_dhash_lines = random.randint(8, 12)
for _ in range(num_dhash_lines):
if random.random() < 0.5:
y = random.randint(0, h - 1)
line_width = random.randint(1, 3)
if len(mask.shape) == 3: # 彩色图像
line_width = random.randint(1, 4) # 增加线宽可能性
if len(mask.shape) == 3:
mask[max(0, y-line_width//2):min(h, y+line_width//2+1), :, :] = True
else: # 灰度图像
else:
mask[max(0, y-line_width//2):min(h, y+line_width//2+1), :] = True
else: # 垂直线
else:
x = random.randint(0, w - 1)
line_width = random.randint(1, 3)
if len(mask.shape) == 3: # 彩色图像
line_width = random.randint(1, 4) # 增加线宽可能性
if len(mask.shape) == 3:
mask[:, max(0, x-line_width//2):min(w, x+line_width//2+1), :] = True
else: # 灰度图像
else:
mask[:, max(0, x-line_width//2):min(w, x+line_width//2+1)] = True
# 应用梯度干扰
if len(img_array.shape) == 3: # 彩色图像
delta = (np.random.random(img_array.shape) * 2 - 1) * dhash_intensity * 25
for c in range(img_array.shape[2]):
img_array[:,:,c][mask[:,:,c]] += delta[:,:,c][mask[:,:,c]]
else: # 灰度图像
delta = (np.random.random(img_array.shape) * 2 - 1) * dhash_intensity * 25
img_array[mask] += delta[mask]
delta = (np.random.random(img_array.shape) * 2 - 1) * dhash_intensity * 35 # 增加delta范围
img_array[mask] += delta[mask].astype(np.int16)
img_array = np.clip(img_array, 0, 255).astype(np.uint8)
img_array = np.clip(img_array, 0, 255)
# 4. 颜色直方图扰动
image = Image.fromarray(img_array)
image = self.perturb_color_histogram(image, strength=dhash_intensity)
# 4. 颜色直方图扰动 (强度也略微增加)
image = Image.fromarray(img_array.astype(np.uint8))
color_hist_strength = dhash_intensity * 0.6 # 关联强度
image = self.perturb_color_histogram(image, strength=color_hist_strength)
# 5. 区域翻转 - 特别有效对抗所有哈希算法
if strength != "low" and random.random() < 0.5:
# 5. 区域翻转 - 强度已增加
if random.random() < region_flip_prob:
img_array = np.array(image)
# 随机选择一个小区域
region_w = random.randint(w//30, w//20)
region_h = random.randint(h//30, h//20)
h, w = img_array.shape[0], img_array.shape[1]
# 增加区域大小可能性
max_region_factor = 15 if strength == 'high' else 20
region_w = random.randint(w//(max_region_factor+5), w//max_region_factor)
region_h = random.randint(h//(max_region_factor+5), h//max_region_factor)
x = random.randint(0, w - region_w)
y = random.randint(0, h - region_h)
# 对区域进行水平或垂直翻转
if random.random() < 0.5: # 水平翻转
if len(img_array.shape) == 3: # 彩色图像
img_array[y:y+region_h, x:x+region_w, :] = img_array[y:y+region_h, x:x+region_w, :][:, ::-1, :]
else: # 灰度图像
img_array[y:y+region_h, x:x+region_w] = img_array[y:y+region_h, x:x+region_w][:, ::-1]
else: # 垂直翻转
if len(img_array.shape) == 3: # 彩色图像
img_array[y:y+region_h, x:x+region_w, :] = img_array[y:y+region_h, x:x+region_w, :][::-1, :, :]
else: # 灰度图像
img_array[y:y+region_h, x:x+region_w] = img_array[y:y+region_h, x:x+region_w][::-1, :]
# 加入90度旋转的可能性
action = random.choice(['flip_h', 'flip_v', 'rotate_90']) if strength != 'low' else random.choice(['flip_h', 'flip_v'])
region = img_array[y:y+region_h, x:x+region_w]
if action == 'flip_h':
img_array[y:y+region_h, x:x+region_w] = region[:, ::-1]
elif action == 'flip_v':
img_array[y:y+region_h, x:x+region_w] = region[::-1, :]
elif action == 'rotate_90' and len(img_array.shape) == 3: # 旋转只对原尺寸区域有效
# 注意:旋转可能需要调整区域大小或填充,这里简化处理
# 仅在区域接近正方形时效果较好
if abs(region_w - region_h) < 5:
rotated_region = np.rot90(region)
# 需要确保旋转后尺寸匹配,如果尺寸变化则跳过或填充
if rotated_region.shape[0] == region_h and rotated_region.shape[1] == region_w:
img_array[y:y+region_h, x:x+region_w] = rotated_region
image = Image.fromarray(img_array)
# 6. (新增可选) 轻微高斯噪声 - 对所有哈希都有轻微普适性干扰
if strength != 'low' and random.random() < 0.4:
img_array = np.array(image)
noise_sigma = 1.0 if strength == 'medium' else 2.0 # 噪声标准差
noise = np.random.normal(0, noise_sigma, img_array.shape)
img_array = np.clip(img_array + noise, 0, 255).astype(np.uint8)
image = Image.fromarray(img_array)
return image
@ -750,6 +735,70 @@ class PosterNotesCreator:
return processed_image
def perturb_color_histogram(self, image: Image.Image, strength: float = 0.03) -> Image.Image:
"""
扰动图像的颜色直方图对抗基于颜色统计的图像匹配
Args:
image: 输入图像
strength: 扰动强度(0-1)
Returns:
处理后的图像
"""
# 确保为RGB模式
if image.mode != 'RGB':
image = image.convert('RGB')
# 转为numpy数组
img_array = np.array(image)
height, width, channels = img_array.shape
# 对每个通道分别处理
for channel in range(channels):
# 计算当前通道的直方图
hist, _ = np.histogram(img_array[:,:,channel].flatten(), bins=64, range=(0, 256))
# 找出主要颜色区间 (频率高的区间)
threshold = np.percentile(hist, 70) # 取前30%的颜色块
significant_bins = np.where(hist > threshold)[0]
if len(significant_bins) > 0:
for bin_idx in significant_bins:
# 计算当前bin对应的颜色范围
bin_width = 256 // 64
color_low = bin_idx * bin_width
color_high = (bin_idx + 1) * bin_width
# 创建颜色范围掩码
mask = (img_array[:,:,channel] >= color_low) & (img_array[:,:,channel] < color_high)
if np.any(mask):
# 生成随机偏移值
offset = int(strength * bin_width * (random.random() - 0.5) * 2)
# 应用偏移确保在0-255范围内
img_array[:,:,channel][mask] = np.clip(
img_array[:,:,channel][mask] + offset, 0, 255).astype(np.uint8)
# 转回PIL图像
return Image.fromarray(img_array)
def strip_metadata(self, image: Image.Image) -> Image.Image:
"""
移除图像中的所有元数据
Args:
image: 输入图像
Returns:
无元数据的图像
"""
# 创建无元数据的副本
data = io.BytesIO()
image.save(data, format=image.format if image.format else 'PNG')
return Image.open(data)
def process_poster_for_notes(
run_id: str,
topic_index: int,