修改了object目录读取的方式

This commit is contained in:
jinye_huang 2025-04-22 18:41:20 +08:00
parent 67722a5c72
commit 4a4b37cba7
5 changed files with 339 additions and 180 deletions

View File

@ -8,128 +8,229 @@ import time
from datetime import datetime
import logging
# Add project root to the Python path
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, project_root)
# --- Setup Project Root Path ---
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if PROJECT_ROOT not in sys.path:
sys.path.append(PROJECT_ROOT)
# --- End Setup ---
from core.ai_agent import AI_Agent
from utils.prompt_manager import PromptManager
from utils.tweet_generator import (
run_topic_generation_pipeline,
generate_content_for_topic,
generate_posters_for_topic
)
def load_config(config_path="/root/autodl-tmp/TravelContentCreator/poster_gen_config.json"):
"""Loads configuration relative to the script."""
if not os.path.exists(config_path):
logging.error(f"Error: Config file '{config_path}' not found.")
# --- Imports from the project ---
try:
from utils.tweet_generator import run_topic_generation_pipeline, generate_content_for_topic, generate_posters_for_topic
from core.topic_parser import TopicParser
from utils.prompt_manager import PromptManager # Needed for content generation
from core.ai_agent import AI_Agent # Needed for content generation
# from utils.tweet_generator import tweetTopicRecord # No longer needed directly
from utils.output_handler import FileSystemOutputHandler, OutputHandler # Import handlers
except ImportError as e:
logging.critical(f"ImportError: {e}. Ensure all core/utils modules are available and '{PROJECT_ROOT}' is in sys.path.")
sys.exit(1)
# --- End Imports ---
def load_config(config_path):
"""Loads configuration from a JSON file."""
try:
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
logging.info("Configuration loaded successfully.")
logging.info(f"Config loaded successfully from {config_path}")
return config
except FileNotFoundError:
logging.error(f"Error: Configuration file not found at {config_path}")
return None
except json.JSONDecodeError:
logging.error(f"Error: Could not decode JSON from {config_path}")
return None
except Exception as e:
logging.error(f"Error loading configuration: {e}")
sys.exit(1)
logging.exception(f"An unexpected error occurred loading config {config_path}:")
return None
def main_test():
# --- Basic Logging Setup ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# --- End Logging Setup ---
logging.info("--- Starting Pipeline Step Test ---")
config = load_config()
logging.info("--- Starting Pipeline Steps Test ---")
# --- Override config for faster testing ---
config['num'] = 1 # Generate only 1 topic
config['variants'] = 1 # Generate only 1 content/poster variant
logging.info(f"Config overridden for testing: num={config['num']}, variants={config['variants']}")
# 1. Load Configuration
config_path = os.path.join(PROJECT_ROOT, "poster_gen_config.json") # Use project root path
config = load_config(config_path)
if config is None:
logging.critical("Failed to load configuration. Exiting test.")
sys.exit(1)
run_id = None
tweet_topic_record = None
ai_agent_content = None # Separate agent instance for content/poster
# --- Initialize Output Handler ---
output_handler: OutputHandler = FileSystemOutputHandler(config.get("output_dir", "result"))
logging.info(f"Using Output Handler: {output_handler.__class__.__name__}")
# --- End Output Handler Init ---
# 2. Define a unique Run ID for this test run
test_run_id = f"test_pipeline_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
logging.info(f"Using Run ID: {test_run_id}")
# --- Step 1: Topic Generation ---
logging.info("\n--- Testing Step 1: Topic Generation ---")
step1_start = time.time()
# run_topic_generation_pipeline still takes config internally
run_id_step1, topics_list, system_prompt, user_prompt = run_topic_generation_pipeline(config, run_id=test_run_id)
step1_end = time.time()
if run_id_step1 is None or topics_list is None:
logging.error("Topic generation (Step 1) failed. Cannot proceed.")
sys.exit(1)
if run_id_step1 != test_run_id:
logging.warning(f"run_id returned from step 1 ({run_id_step1}) differs from the one provided ({test_run_id}). Using the returned one.")
test_run_id = run_id_step1 # Use the ID actually used by the pipeline
logging.info(f"Step 1 finished in {step1_end - step1_start:.2f} seconds.")
logging.info(f"Generated {len(topics_list)} topics for Run ID: {test_run_id}")
# Use output handler to save topic results (mimics main.py)
output_handler.handle_topic_results(test_run_id, topics_list, system_prompt, user_prompt)
# --- Step 2: Content and Poster Generation ---
logging.info("\n--- Testing Step 2: Content and Poster Generation ---")
step2_start = time.time()
# Initialize resources needed for step 2, extracting params from config
prompt_manager = None
ai_agent = None
step2_success_flag = False
try:
# --- Step 1: Test Topic Generation ---
logging.info("\n--- Testing Topic Generation ---")
run_id, tweet_topic_record = run_topic_generation_pipeline(config) # run_id generated inside if not passed
# --- Create PromptManager ---
prompt_manager = PromptManager(
topic_system_prompt_path=config.get("topic_system_prompt"),
topic_user_prompt_path=config.get("topic_user_prompt"),
content_system_prompt_path=config.get("content_system_prompt"),
prompts_dir=config.get("prompts_dir"),
resource_dir_config=config.get("resource_dir", []),
topic_gen_num=config.get("num", 1),
topic_gen_date=config.get("date", "")
)
logging.info("PromptManager instance created for Step 2 test.")
if not run_id or not tweet_topic_record or not tweet_topic_record.topics_list:
logging.info("Topic generation failed or produced no topics. Exiting test.")
return
logging.info(f"Topic generation successful. Run ID: {run_id}")
logging.info(f"Generated {len(tweet_topic_record.topics_list)} topic(s).")
test_topic = tweet_topic_record.topics_list[0] # Get the first topic for testing
logging.info("Test Topic Data:", json.dumps(test_topic, ensure_ascii=False, indent=2))
# --- Step 2: Test Content Generation (for the first topic) ---
logging.info("\n--- Testing Content Generation ---")
# Initialize resources needed for content generation
prompt_manager = PromptManager(config)
logging.info("Initializing AI Agent for content...")
# --- Create AI Agent ---
ai_api_url = config.get("api_url")
ai_model = config.get("model")
ai_api_key = config.get("api_key")
request_timeout = config.get("request_timeout", 30)
max_retries = config.get("max_retries", 3)
ai_agent_content = AI_Agent(
config["api_url"],
config["model"],
config["api_key"],
if not all([ai_api_url, ai_model, ai_api_key]):
raise ValueError("Missing required AI configuration (api_url, model, api_key)")
logging.info("Initializing AI Agent for content generation test...")
ai_agent = AI_Agent(
base_url=ai_api_url,
model_name=ai_model,
api=ai_api_key,
timeout=request_timeout,
max_retries=max_retries
)
base_output_dir = config["output_dir"]
topic_index = 1 # Testing the first topic (1-based index)
total_topics = len(topics_list)
logging.info(f"Processing {total_topics} topics for content/posters...")
for i, topic_item in enumerate(topics_list):
topic_index = topic_item.get('index', i + 1)
logging.info(f"--- Processing Topic {topic_index}/{total_topics} ---")
tweet_content_list = generate_content_for_topic(
ai_agent_content, prompt_manager, config, test_topic,
base_output_dir, run_id, topic_index
# --- Generate Content ---
content_variants = config.get("variants", 1)
content_temp = config.get("content_temperature", 0.3)
content_top_p = config.get("content_top_p", 0.4)
content_presence_penalty = config.get("content_presence_penalty", 1.5)
content_success = generate_content_for_topic(
ai_agent=ai_agent,
prompt_manager=prompt_manager,
topic_item=topic_item,
run_id=test_run_id,
topic_index=topic_index,
output_handler=output_handler,
variants=content_variants,
temperature=content_temp,
top_p=content_top_p,
presence_penalty=content_presence_penalty
)
if not tweet_content_list:
logging.info("Content generation failed or produced no content. Exiting test.")
return
if content_success:
logging.info(f"Content generation successful for Topic {topic_index}.")
# --- Generate Posters ---
poster_variants = config.get("variants", 1)
poster_assets_dir = config.get("poster_assets_base_dir")
img_base_dir = config.get("image_base_dir")
mod_img_subdir = config.get("modify_image_subdir", "modify")
res_dir_config = config.get("resource_dir", [])
poster_size = tuple(config.get("poster_target_size", [900, 1200]))
txt_possibility = config.get("text_possibility", 0.3)
collage_subdir = config.get("output_collage_subdir", "collage_img")
poster_subdir = config.get("output_poster_subdir", "poster")
poster_filename = config.get("output_poster_filename", "poster.jpg")
cam_img_subdir = config.get("camera_image_subdir", "相机")
logging.info(f"Content generation successful. Generated {len(tweet_content_list)} variant(s).")
logging.info("Generated Content Data (first variant):", json.dumps(tweet_content_list[0], ensure_ascii=False, indent=2))
if not poster_assets_dir or not img_base_dir:
logging.error(f"Missing critical paths for poster generation. Skipping posters for topic {topic_index}.")
continue
# --- Step 3: Test Poster Generation (for the first topic/content) ---
logging.info("\n--- Testing Poster Generation ---")
# Poster generation uses its own internal ContentGenerator and PosterGenerator instances
# We just need to call the function
success = generate_posters_for_topic(
config,
test_topic,
tweet_content_list, # Pass the list generated above
base_output_dir,
run_id,
topic_index
posters_attempted = generate_posters_for_topic(
topic_item=topic_item,
output_dir=config.get("output_dir", "result"),
run_id=test_run_id,
topic_index=topic_index,
output_handler=output_handler,
variants=poster_variants,
poster_assets_base_dir=poster_assets_dir,
image_base_dir=img_base_dir,
modify_image_subdir=mod_img_subdir,
resource_dir_config=res_dir_config,
poster_target_size=poster_size,
text_possibility=txt_possibility,
output_collage_subdir=collage_subdir,
output_poster_subdir=poster_subdir,
output_poster_filename=poster_filename,
camera_image_subdir=cam_img_subdir
)
if success:
logging.info("Poster generation function executed (check output directory for results).")
if posters_attempted:
logging.info(f"Poster generation process completed for Topic {topic_index}.")
step2_success_flag = True
else:
logging.info("Poster generation function reported failure or skipped execution.")
logging.warning(f"Poster generation skipped/failed for Topic {topic_index}.")
else:
logging.warning(f"Content generation failed for Topic {topic_index}. Skipping posters.")
logging.info(f"--- Finished Topic {topic_index} ---")
except ValueError as e:
logging.error(f"Configuration error during Step 2 setup: {e}")
step2_success_flag = False
except Exception as e:
logging.info(f"\n--- An error occurred during testing ---")
logging.error(f"Error: {e}")
logging.exception("An error occurred during Step 2 processing:")
step2_success_flag = False # Ensure flag is false on error
finally:
# Clean up the content generation AI agent if it was created
if ai_agent_content:
logging.info("\nClosing content generation AI Agent...")
ai_agent_content.close()
logging.info("\n--- Test Finished ---")
if ai_agent:
logging.info("Closing AI Agent for content generation test...")
ai_agent.close()
# --- End Simulated Step 2 Logic ---
step2_end = time.time()
if step2_success_flag:
logging.info(f"Step 2 finished in {step2_end - step2_start:.2f} seconds.")
else:
logging.warning(f"Step 2 finished in {step2_end - step2_start:.2f} seconds, but encountered errors or generated no output.")
# --- Finalize Output ---
if test_run_id:
output_handler.finalize(test_run_id)
# --- End Finalize ---
# --- Test Summary ---
logging.info("\n--- Pipeline Steps Test Summary ---")
logging.info(f"Run ID: {test_run_id}")
output_location = os.path.join(config["output_dir"], test_run_id)
logging.info(f"Check output files in: {output_location}")
if os.path.exists(output_location):
logging.info("Output directory exists.")
else:
logging.warning("Output directory NOT found.")
if __name__ == "__main__":
main_test()

View File

@ -7,101 +7,119 @@ import json
import time
import logging
# Add project root to the Python path to allow importing modules from core and utils
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, project_root)
# Determine the project root directory (assuming examples/ is one level down)
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if PROJECT_ROOT not in sys.path:
sys.path.append(PROJECT_ROOT)
# Now import from core
try:
from core.ai_agent import AI_Agent
def load_config(config_path="../poster_gen_config.json"):
"""Loads configuration from a JSON file relative to this script."""
if not os.path.exists(config_path):
logging.error(f"Error: Configuration file '{config_path}' not found.")
logging.error("Make sure you have copied 'example_config.json' to 'poster_gen_config.json' in the project root.")
except ImportError as e:
logging.critical(f"Failed to import AI_Agent. Ensure '{PROJECT_ROOT}' is in sys.path and core/ai_agent.py exists. Error: {e}")
sys.exit(1)
def load_config(config_path):
"""Loads configuration from a JSON file."""
try:
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
# Basic validation can be added here if needed
logging.info(f"Configuration loaded successfully from {config_path}")
logging.info(f"Config loaded successfully from {config_path}")
return config
except FileNotFoundError:
logging.error(f"Error: Configuration file not found at {config_path}")
return None
except json.JSONDecodeError:
logging.error(f"Error: Could not decode JSON from {config_path}")
return None
except Exception as e:
logging.error(f"Error loading configuration from '{config_path}': {e}")
sys.exit(1)
logging.exception(f"An unexpected error occurred loading config {config_path}:")
return None
def main():
# --- Basic Logging Setup ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# --- End Logging Setup ---
logging.info("--- Testing AI Agent Streaming ---")
logging.info("Starting AI Agent Stream Test...")
# 1. Load configuration
config = load_config()
# Load configuration (adjust path relative to this script)
config_path = os.path.join(PROJECT_ROOT, "poster_gen_config.json")
config = load_config(config_path)
if config is None:
logging.critical("Failed to load configuration. Exiting test.")
sys.exit(1)
# 2. Define example prompts (replace with your desired test prompts)
test_system_prompt = "You are a helpful assistant. Respond concisely."
test_user_prompt = "Tell me a short story about a traveling robot."
# Example Prompts
system_prompt = "你是一个乐于助人的AI助手擅长写短篇故事。"
user_prompt = "请写一个关于旅行机器人的短篇故事,它在一个充满异国情调的星球上发现了新的生命形式。"
# You can optionally specify a folder with reference files
test_file_folder = None # Or e.g., "../resource/Object"
# Get generation parameters from config or use defaults
temperature = config.get("content_temperature", 0.7) # Using content params as example
top_p = config.get("content_top_p", 0.9)
presence_penalty = config.get("content_presence_penalty", 1.0)
# 3. Initialize AI Agent
ai_agent = None
try:
# --- Extract AI Agent parameters from config ---
ai_api_url = config.get("api_url")
ai_model = config.get("model")
ai_api_key = config.get("api_key")
request_timeout = config.get("request_timeout", 30)
max_retries = config.get("max_retries", 3)
# Check for required AI params
if not all([ai_api_url, ai_model, ai_api_key]):
logging.critical("Missing required AI configuration (api_url, model, api_key) in config. Exiting test.")
sys.exit(1)
# --- End Extract AI Agent params ---
logging.info("Initializing AI Agent for stream test...")
# Initialize AI_Agent using extracted parameters
ai_agent = AI_Agent(
config["api_url"],
config["model"],
config["api_key"],
api_url=ai_api_url, # Use extracted var
model=ai_model, # Use extracted var
api_key=ai_api_key, # Use extracted var
timeout=request_timeout,
max_retries=max_retries
)
logging.info("AI Agent initialized.")
# 4. Call work_stream and process the generator
logging.info("\n--- Starting stream generation ---")
# Example call to work_stream
logging.info("Calling ai_agent.work_stream...")
# Extract generation parameters from config
temperature = config.get("content_temperature", 0.7) # Use a relevant temperature setting
top_p = config.get("content_top_p", 0.9)
presence_penalty = config.get("content_presence_penalty", 0.0)
start_time = time.time()
stream_generator = ai_agent.work_stream(
test_system_prompt,
test_user_prompt,
test_file_folder,
temperature,
top_p,
presence_penalty
system_prompt=system_prompt,
user_prompt=user_prompt,
info_directory=None, # No extra context folder for this test
temperature=temperature,
top_p=top_p,
presence_penalty=presence_penalty
)
full_response_streamed = ""
try:
# Process the stream
logging.info("Processing stream response:")
full_response = ""
for chunk in stream_generator:
print(chunk, end="", flush=True) # Print each chunk as it arrives
full_response_streamed += chunk
except Exception as e:
logging.error(f"\nError while iterating through stream generator: {e}")
print(chunk, end="", flush=True) # Keep print for stream output
full_response += chunk
end_time = time.time()
logging.info(f"\n--- Stream finished in {end_time - start_time:.2f} seconds ---")
# print(f"Full response received via stream:\n{full_response_streamed}") # Optionally print the assembled response
logging.info(f"\n--- Stream Finished ---")
logging.info(f"Total time: {end_time - start_time:.2f} seconds")
logging.info(f"Total characters received: {len(full_response)}")
except KeyError as e:
logging.error(f"Configuration error: Missing key '{e}'. Please check '{config_path}'.")
except Exception as e:
logging.error(f"\nAn error occurred: {e}")
import traceback
traceback.print_exc()
logging.exception("An error occurred during the stream test:")
finally:
# 5. Close the agent
# Ensure the agent is closed
if ai_agent:
logging.info("\nClosing AI Agent...")
logging.info("Closing AI Agent...")
ai_agent.close()
logging.info("AI Agent closed.")

18
main.py
View File

@ -71,7 +71,23 @@ def generate_content_and_posters_step(config, run_id, topics_list, output_handle
logging.info(f"Processing {len(topics_list)} topics...")
success_flag = False
prompt_manager = PromptManager(config)
# --- 创建 PromptManager 实例 (传入具体参数) ---
try:
prompt_manager = PromptManager(
topic_system_prompt_path=config.get("topic_system_prompt"),
topic_user_prompt_path=config.get("topic_user_prompt"),
content_system_prompt_path=config.get("content_system_prompt"),
prompts_dir=config.get("prompts_dir"),
resource_dir_config=config.get("resource_dir", []),
topic_gen_num=config.get("num", 1), # Topic gen num/date used by topic prompts
topic_gen_date=config.get("date", "")
)
logging.info("PromptManager instance created for Step 2.")
except KeyError as e:
logging.error(f"Configuration error creating PromptManager: Missing key '{e}'. Cannot proceed with content generation.")
return False
# --- 结束创建 PromptManager ---
ai_agent = None
try:
# --- Initialize AI Agent for Content Generation ---

View File

@ -137,36 +137,60 @@ class PromptManager:
except Exception as e:
logging.exception("Error processing Demand description:")
# 2. 添加Object信息 (based on topic_item['object'])
# 2. Object Info - 先列出所有可用文件,再注入匹配文件的内容
try:
object_name_base = topic_item['object'] # This might be '景点信息-XXX.txt'
object_file_path = None
# Find the full path for the object file from config
object_name_from_topic = topic_item.get('object') # e.g., "尚书第建筑群"
object_file_basenames = []
matched_object_file_path = None
matched_object_basename = None
# 遍历查找 Object 文件
for dir_info in resource_dir_config:
if dir_info.get("type") == "Object":
for file_path in dir_info.get("file_path", []):
# Match basename, assuming topic_item['object'] is the basename
# if os.path.basename(file_path) == object_name_base:
# Use containment check instead of exact match
if object_name_base in os.path.basename(file_path):
object_file_path = file_path
break
if object_file_path: break
basename = os.path.basename(file_path)
object_file_basenames.append(basename)
if object_file_path:
object_content = ResourceLoader.load_file_content(object_file_path)
if object_content:
user_prompt += f"Object Info:\n{object_content}\n"
# 尝试匹配当前 topic 的 object (仅当尚未找到匹配时)
if object_name_from_topic and not matched_object_file_path:
cleaned_resource_name = basename
if cleaned_resource_name.startswith("景点信息-"):
cleaned_resource_name = cleaned_resource_name[len("景点信息-"):]
if cleaned_resource_name.endswith(".txt"):
cleaned_resource_name = cleaned_resource_name[:-len(".txt")]
if cleaned_resource_name and cleaned_resource_name in object_name_from_topic:
matched_object_file_path = file_path
matched_object_basename = basename
# 注意:这里不 break继续收集所有文件名
# 构建提示词 - Part 1: 文件列表
if object_file_basenames:
user_prompt += "Object信息:\n"
# user_prompt += f"{object_file_basenames}\n\n" # 直接打印列表可能不够清晰
for fname in object_file_basenames:
user_prompt += f"- {fname}\n"
user_prompt += "\n" # 加一个空行
logging.info(f"Listed {len(object_file_basenames)} available object files.")
else:
logging.warning(f"Object file could not be loaded: {object_file_path}")
logging.warning("No resource directory entry found with type 'Object', or it has no file paths.")
# 构建提示词 - Part 2: 注入匹配文件内容
if matched_object_file_path:
logging.info(f"Attempting to load content for matched object file: {matched_object_basename}")
matched_object_content = ResourceLoader.load_file_content(matched_object_file_path)
if matched_object_content:
user_prompt += f"{matched_object_basename}\n{matched_object_content}\n\n"
logging.info(f"Successfully loaded and injected content for: {matched_object_basename}")
else:
# If basename match fails, maybe topic_item['object'] is just 'XXX'?
# Try finding based on substring? This might be ambiguous.
logging.warning(f"Object file path not found in config matching object: {topic_item.get('object')}")
logging.warning(f"Object file matched ({matched_object_basename}) but could not be loaded or is empty.")
elif object_name_from_topic: # 只有当 topic 中指定了 object 但没找到匹配文件时才警告
logging.warning(f"Could not find a matching Object resource file to inject content for '{object_name_from_topic}'. Only the list of files was provided.")
except KeyError:
logging.warning("Warning: 'object' key missing in topic_item for Object prompt.")
logging.warning("Warning: 'object' key potentially missing in topic_item.")
except Exception as e:
logging.exception("Error processing Object prompt:")
logging.exception("Error processing Object prompt section:")
# 3. 添加Product信息 (if applicable)
try: