import os from openai import OpenAI, APITimeoutError, APIConnectionError, RateLimitError, APIStatusError import time import random import traceback import logging import tiktoken # Configure basic logging for this module (or rely on root logger config) # logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') # logger = logging.getLogger(__name__) # Alternative: use named logger # Constants MAX_RETRIES = 3 # Maximum number of retries for API calls INITIAL_BACKOFF = 1 # Initial backoff time in seconds MAX_BACKOFF = 16 # Maximum backoff time in seconds STREAM_CHUNK_TIMEOUT = 10 # Timeout in seconds for receiving a chunk in stream class AI_Agent(): """AI代理类,负责与AI模型交互生成文本内容""" def __init__(self, base_url, model_name, api, timeout=30, max_retries=3, stream_chunk_timeout=10): """ 初始化 AI 代理。 Args: base_url (str): 模型服务的基础 URL 或预设名称 ('deepseek', 'vllm')。 model_name (str): 要使用的模型名称。 api (str): API 密钥。 timeout (int, optional): 单次 API 请求的超时时间 (秒)。 Defaults to 30. max_retries (int, optional): API 请求失败时的最大重试次数。 Defaults to 3. stream_chunk_timeout (int, optional): 流式响应中两个数据块之间的最大等待时间 (秒)。 Defaults to 10. """ logging.info("Initializing AI Agent") self.url_list = { "ali": "https://dashscope.aliyuncs.com/compatible-mode/v1", "kimi": "https://api.moonshot.cn/v1", "doubao": "https://ark.cn-beijing.volces.com/api/v3/", "deepseek": "https://api.deepseek.com", "vllm": "http://localhost:8000/v1", } self.base_url = self.url_list.get(base_url, base_url) self.api = api self.model_name = model_name self.timeout = timeout self.max_retries = max_retries self.stream_chunk_timeout = stream_chunk_timeout logging.info(f"AI Agent Settings: base_url={self.base_url}, model={self.model_name}, timeout={self.timeout}s, max_retries={self.max_retries}, stream_chunk_timeout={self.stream_chunk_timeout}s") self.client = OpenAI( api_key=self.api, base_url=self.base_url, timeout=self.timeout ) # try: # self.encoding = tiktoken.encoding_for_model(self.model_name) # except KeyError: # logging.warning(f"Encoding for model '{self.model_name}' not found. Using 'cl100k_base' encoding.") # self.encoding = tiktoken.get_encoding("cl100k_base") def generate_text(self, system_prompt, user_prompt, temperature, top_p, presence_penalty): """生成文本内容,并返回完整响应和token估计值""" logging.info("Starting text generation process...") # logging.debug(f"System Prompt (first 100): {system_prompt[:100]}...") # logging.debug(f"User Prompt (first 100): {user_prompt[:100]}...") # Avoid logging potentially huge prompts logging.info(f"Generation Params: temp={temperature}, top_p={top_p}, presence_penalty={presence_penalty}") retry_count = 0 max_retry_wait = 10 # Max wait time between retries full_response = "" while retry_count <= self.max_retries: call_start_time = None # Initialize start time try: # --- Added Logging --- user_prompt_size = len(user_prompt) logging.info(f"Attempt {retry_count + 1}/{self.max_retries + 1}: Preparing API request. User prompt size: {user_prompt_size} chars.") call_start_time = time.time() # --- End Added Logging --- response = self.client.chat.completions.create( model=self.model_name, messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}], temperature=temperature, top_p=top_p, presence_penalty=presence_penalty, stream=False, # Ensure this is False for non-streaming method max_tokens=8192, timeout=self.timeout, extra_body={ "repetition_penalty": 1.05, }, ) # --- Added Logging --- call_end_time = time.time() logging.info(f"Attempt {retry_count + 1}/{self.max_retries + 1}: API request function returned successfully after {call_end_time - call_start_time:.2f} seconds.") # --- End Added Logging --- if response.choices and response.choices[0].message: full_response = response.choices[0].message.content logging.info(f"Received successful response. Content length: {len(full_response)} chars.") break # Success, exit retry loop else: logging.warning("API response structure unexpected or empty content.") full_response = "[Error: Empty or invalid response structure]" # Decide if this specific case should retry or fail immediately retry_count += 1 # Example: Treat as retryable if retry_count <= self.max_retries: wait_time = min(2 ** retry_count + random.random(), max_retry_wait) logging.warning(f"Retrying due to unexpected response structure ({retry_count}/{self.max_retries}), waiting {wait_time:.2f}s...") time.sleep(wait_time) continue except (APITimeoutError, APIConnectionError, RateLimitError, APIStatusError) as e: # --- Added Logging --- if call_start_time: call_fail_time = time.time() logging.warning(f"Attempt {retry_count + 1}/{self.max_retries + 1}: API call failed/timed out after {call_fail_time - call_start_time:.2f} seconds.") else: logging.warning(f"Attempt {retry_count + 1}/{self.max_retries + 1}: API call failed before or during initiation.") # --- End Added Logging --- logging.warning(f"API Error occurred: {e}") should_retry = False if isinstance(e, (APITimeoutError, APIConnectionError, RateLimitError)): should_retry = True elif isinstance(e, APIStatusError) and e.status_code >= 500: should_retry = True if should_retry: retry_count += 1 if retry_count <= self.max_retries: wait_time = min(2 ** retry_count + random.random(), max_retry_wait) logging.warning(f"Retrying API call ({retry_count}/{self.max_retries}) after error, waiting {wait_time:.2f}s...") time.sleep(wait_time) else: logging.error(f"Max retries ({self.max_retries}) reached for API errors. Aborting.") return "请求失败,无法生成内容。", 0 else: logging.error(f"Non-retriable API error: {e}. Aborting.") return "请求失败,发生不可重试错误。", 0 except Exception as e: logging.exception(f"Unexpected error during API call setup/execution:") retry_count += 1 if retry_count <= self.max_retries: wait_time = min(2 ** retry_count + random.random(), max_retry_wait) logging.warning(f"Retrying API call ({retry_count}/{self.max_retries}) after unexpected error, waiting {wait_time:.2f}s...") time.sleep(wait_time) else: logging.error(f"Max retries ({self.max_retries}) reached after unexpected errors. Aborting.") return "请求失败,发生未知错误。", 0 logging.info("Text generation completed.") estimated_tokens = len(full_response.split()) * 1.3 return full_response, estimated_tokens def read_folder(self, file_folder): """读取指定文件夹下的所有文件内容""" if not os.path.exists(file_folder): logging.warning(f"Referenced folder does not exist: {file_folder}") return "" context = "" try: for file in os.listdir(file_folder): file_path = os.path.join(file_folder, file) if os.path.isfile(file_path): try: with open(file_path, "r", encoding="utf-8") as f: context += f"文件名: {file}\n" context += f.read() context += "\n\n" except Exception as read_err: logging.error(f"Failed to read file {file_path}: {read_err}") except Exception as list_err: logging.error(f"Failed to list directory {file_folder}: {list_err}") return context def work(self, system_prompt, user_prompt, file_folder, temperature, top_p, presence_penalty): """完整的工作流程:生成文本并返回结果""" logging.info(f"Starting 'work' process. File folder: {file_folder}") if file_folder: logging.info(f"Reading context from folder: {file_folder}") context = self.read_folder(file_folder) if context: user_prompt = f"{user_prompt.strip()}\n\n--- 参考资料 ---\n{context.strip()}" else: logging.warning(f"Folder {file_folder} provided but no content read.") time_start = time.time() result, tokens = self.generate_text(system_prompt, user_prompt, temperature, top_p, presence_penalty) time_end = time.time() time_cost = time_end - time_start logging.info(f"'work' completed in {time_cost:.2f}s. Estimated tokens: {tokens}") return result, tokens, time_cost def close(self): try: logging.info("Closing AI Agent (client resources will be garbage collected).") self.client = None except Exception as e: logging.error(f"Error during AI Agent close: {e}") # --- Streaming Methods --- def generate_text_stream(self, system_prompt, user_prompt, temperature, top_p, presence_penalty): """ Generates text based on prompts using a streaming connection. Handles retries with exponential backoff. Args: system_prompt: The system prompt for the AI. user_prompt: The user prompt for the AI. temperature: Sampling temperature. top_p: Nucleus sampling parameter. Yields: str: Chunks of the generated text. Raises: Exception: If the API call fails after all retries. """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ] logging.info(f"Generating text stream with model: {self.model_name}") retries = 0 backoff_time = INITIAL_BACKOFF last_exception = None while retries < self.max_retries: try: logging.debug(f"Attempt {retries + 1}/{self.max_retries} to generate text stream.") stream = self.client.chat.completions.create( model=self.model_name, messages=messages, temperature=temperature, top_p=top_p, stream=True, timeout=self.timeout # Overall request timeout ) chunk_iterator = iter(stream) last_chunk_time = time.time() while True: try: # Check for timeout since last received chunk if time.time() - last_chunk_time > self.stream_chunk_timeout: raise Timeout(f"No chunk received for {self.stream_chunk_timeout} seconds.") chunk = next(chunk_iterator) last_chunk_time = time.time() # Reset timer on successful chunk receipt if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content: content = chunk.choices[0].delta.content # logging.debug(f"Received chunk: {content}") # Potentially very verbose yield content elif chunk.choices and chunk.choices[0].finish_reason == 'stop': logging.info("Stream finished.") return # Successful completion # Handle other finish reasons if needed, e.g., 'length' except StopIteration: logging.info("Stream iterator exhausted.") return # End of stream normally except Timeout as e: logging.warning(f"Stream chunk timeout: {e}. Retrying if possible ({retries + 1}/{self.max_retries}).") last_exception = e break # Break inner loop to retry the stream creation except (APITimeoutError, APIConnectionError, RateLimitError) as e: logging.warning(f"API error during streaming: {type(e).__name__} - {e}. Retrying if possible ({retries + 1}/{self.max_retries}).") last_exception = e break # Break inner loop to retry the stream creation except Exception as e: logging.error(f"Unexpected error during streaming: {traceback.format_exc()}") # Decide if this unexpected error should be retried or raised immediately last_exception = e # Option 1: Raise immediately # raise e # Option 2: Treat as retryable (use with caution) break # Break inner loop to retry # If we broke from the inner loop due to an error that needs retry retries += 1 if retries < self.max_retries: logging.info(f"Retrying stream in {backoff_time} seconds...") time.sleep(backoff_time + random.uniform(0, 1)) # Add jitter backoff_time = min(backoff_time * 2, MAX_BACKOFF) else: logging.error(f"Stream generation failed after {self.max_retries} retries.") raise last_exception or Exception("Stream generation failed after max retries.") except (Timeout, APITimeoutError, APIConnectionError, RateLimitError) as e: retries += 1 last_exception = e logging.warning(f"Attempt {retries}/{self.max_retries} failed: {type(e).__name__} - {e}") if retries < self.max_retries: logging.info(f"Retrying in {backoff_time} seconds...") time.sleep(backoff_time + random.uniform(0, 1)) # Add jitter backoff_time = min(backoff_time * 2, MAX_BACKOFF) else: logging.error(f"API call failed after {self.max_retries} retries.") raise last_exception except Exception as e: # Catch unexpected errors during stream setup logging.error(f"Unexpected error setting up stream: {traceback.format_exc()}") raise e # Re-raise unexpected errors immediately # Should not be reached if logic is correct, but as a safeguard: logging.error("Exited stream generation loop unexpectedly.") raise last_exception or Exception("Stream generation failed.") def work_stream(self, system_prompt, user_prompt, file_folder, temperature, top_p, presence_penalty): """完整的工作流程(流式):读取文件夹(如果提供),然后生成文本流""" logging.info(f"Starting 'work_stream' process. File folder: {file_folder}") if file_folder: logging.info(f"Reading context from folder: {file_folder}") context = self.read_folder(file_folder) if context: user_prompt = f"{user_prompt.strip()}\n\n--- 参考资料 ---\n{context.strip()}" else: logging.warning(f"Folder {file_folder} provided but no content read.") logging.info("Calling generate_text_stream...") return self.generate_text_stream(system_prompt, user_prompt, temperature, top_p, presence_penalty) # --- End Added Streaming Methods ---