#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 文字内容服务层 封装现有功能,提供API调用 """ import logging import uuid from typing import List, Dict, Any, Optional, Tuple from datetime import datetime from core.config import ConfigManager, GenerateTopicConfig, GenerateContentConfig from core.ai import AIAgent from utils.file_io import OutputManager from tweet.topic_generator import TopicGenerator from tweet.content_generator import ContentGenerator from tweet.content_judger import ContentJudger from api.services.prompt_builder import PromptBuilderService from api.services.prompt_service import PromptService from api.services.database_service import DatabaseService logger = logging.getLogger(__name__) class TweetService: """文字内容服务类""" def __init__(self, ai_agent: AIAgent, config_manager: ConfigManager, output_manager: OutputManager): """ 初始化文字内容服务 Args: ai_agent: AI代理 config_manager: 配置管理器 output_manager: 输出管理器 """ self.ai_agent = ai_agent self.config_manager = config_manager self.output_manager = output_manager # 初始化各个组件 self.topic_generator = TopicGenerator(ai_agent, config_manager, output_manager) self.content_generator = ContentGenerator(ai_agent, config_manager, output_manager) self.content_judger = ContentJudger(ai_agent, config_manager, output_manager) # 初始化提示词服务和构建器 self.prompt_service = PromptService(config_manager) self.prompt_builder = PromptBuilderService(config_manager, self.prompt_service) async def generate_topics(self, dates: Optional[str] = None, numTopics: int = 5, styles: Optional[List[str]] = None, audiences: Optional[List[str]] = None, scenic_spots: Optional[List[str]] = None, products: Optional[List[str]] = None, style_objects: Optional[List[Dict[str, Any]]] = None, audience_objects: Optional[List[Dict[str, Any]]] = None, scenic_spot_objects: Optional[List[Dict[str, Any]]] = None, product_objects: Optional[List[Dict[str, Any]]] = None) -> Tuple[str, List[Dict[str, Any]]]: """ 生成选题 Args: dates: 日期字符串,可能为单个日期、多个日期用逗号分隔或范围 numTopics: 要生成的选题数量 styles: 风格列表 audiences: 受众列表 scenic_spots: 景区列表 products: 产品列表 style_objects: 风格对象列表 audience_objects: 受众对象列表 scenic_spot_objects: 景区对象列表 product_objects: 产品对象列表 Returns: 请求ID和生成的选题列表 """ logger.info(f"开始生成选题,日期: {dates}, 数量: {numTopics}") # 获取并更新配置 topic_config = self.config_manager.get_config('topic_gen', GenerateTopicConfig) if dates: topic_config.topic.date = dates topic_config.topic.num = numTopics # 使用PromptBuilderService构建提示词 system_prompt, user_prompt = self.prompt_builder.build_topic_prompt( products=products, scenic_spots=scenic_spots, styles=styles, audiences=audiences, dates=dates, numTopics=numTopics, style_objects=style_objects, audience_objects=audience_objects, scenic_spot_objects=scenic_spot_objects, product_objects=product_objects ) # 使用预构建的提示词生成选题 topics = await self.topic_generator.generate_topics_with_prompt(system_prompt, user_prompt) if not topics: logger.error("未能生成任何选题") return str(uuid.uuid4()), [] # 生成请求ID requestId = f"topic-{datetime.now().strftime('%Y%m%d-%H%M%S')}-{str(uuid.uuid4())[:8]}" logger.info(f"选题生成完成,请求ID: {requestId}, 数量: {len(topics)}") return requestId, topics async def generate_content(self, topic: Optional[Dict[str, Any]] = None, autoJudge: bool = False, style_objects: Optional[List[Dict[str, Any]]] = None, audience_objects: Optional[List[Dict[str, Any]]] = None, scenic_spot_objects: Optional[List[Dict[str, Any]]] = None, product_objects: Optional[List[Dict[str, Any]]] = None) -> Tuple[str, str, Dict[str, Any]]: """ 为单个选题生成内容 Args: topic: 选题信息(可能包含ID字段) autoJudge: 是否进行内嵌审核 style_objects: 风格对象列表(可选,用于兼容) audience_objects: 受众对象列表(可选,用于兼容) scenic_spot_objects: 景区对象列表(可选,用于兼容) product_objects: 产品对象列表(可选,用于兼容) Returns: 请求ID、选题索引和生成的内容(包含judgeSuccess状态) """ if not topic: topic = {"index": "1", "date": "2024-07-01"} topicIndex = topic.get('index', 'N/A') logger.info(f"开始为选题 {topicIndex} 生成内容{'(含审核)' if autoJudge else ''}") # 增强版的topic处理:优先使用ID获取最新数据 enhanced_topic = await self._enhance_topic_with_database_data(topic) # 如果没有通过ID获取到数据,使用传入的对象参数作为兜底 if style_objects and not enhanced_topic.get('style_object'): enhanced_topic['style_object'] = style_objects[0] enhanced_topic['style'] = style_objects[0].get('styleName') if audience_objects and not enhanced_topic.get('audience_object'): enhanced_topic['audience_object'] = audience_objects[0] enhanced_topic['targetAudience'] = audience_objects[0].get('audienceName') if scenic_spot_objects and not enhanced_topic.get('scenic_spot_object'): enhanced_topic['scenic_spot_object'] = scenic_spot_objects[0] enhanced_topic['object'] = scenic_spot_objects[0].get('name') if product_objects and not enhanced_topic.get('product_object'): enhanced_topic['product_object'] = product_objects[0] enhanced_topic['product'] = product_objects[0].get('productName') # 使用PromptBuilderService构建提示词 system_prompt, user_prompt = self.prompt_builder.build_content_prompt(enhanced_topic, "content") # 使用预构建的提示词生成内容 content = await self.content_generator.generate_content_with_prompt(enhanced_topic, system_prompt, user_prompt) if not content: logger.error(f"未能为选题 {topicIndex} 生成内容") return str(uuid.uuid4()), topicIndex, {} # 如果启用自动审核,进行内嵌审核 if autoJudge: try: logger.info(f"开始对选题 {topicIndex} 的内容进行内嵌审核") # 使用PromptBuilderService构建审核提示词 judge_system_prompt, judge_user_prompt = self.prompt_builder.build_judge_prompt(enhanced_topic, content) # 进行内容审核 judged_content = await self.content_judger.judge_content_with_prompt(content, enhanced_topic, judge_system_prompt, judge_user_prompt) # 统一输出格式:始终包含judgeSuccess状态 # content_judger返回的是judge_success字段(下划线命名) judge_success = judged_content.get('judge_success', False) if judge_success: logger.info(f"选题 {topicIndex} 内容审核成功") # 审核成功:使用审核后的内容,但移除judge_success,添加统一的judgeSuccess content = {k: v for k, v in judged_content.items() if k != 'judge_success'} content['judgeSuccess'] = True else: logger.warning(f"选题 {topicIndex} 内容审核未通过") # 审核失败:使用原始内容,添加judgeSuccess状态 content['judgeSuccess'] = False except Exception as e: logger.error(f"选题 {topicIndex} 内容审核过程中发生错误: {e}", exc_info=True) # 审核出错:使用原始内容,标记审核失败 content['judgeSuccess'] = False # 生成请求ID requestId = f"content-{datetime.now().strftime('%Y%m%d-%H%M%S')}-{str(uuid.uuid4())[:8]}" logger.info(f"选题 {topicIndex} 内容生成完成,请求ID: {requestId}") return requestId, topicIndex, content async def _enhance_topic_with_database_data(self, topic: Dict[str, Any]) -> Dict[str, Any]: """ 使用数据库数据增强选题信息 Args: topic: 原始选题数据 Returns: 增强后的选题数据 """ enhanced_topic = topic.copy() try: # 通过数据库服务获取详细信息 db_service = DatabaseService(self.config_manager) if not db_service.is_available(): logger.warning("数据库服务不可用,无法增强选题数据") return enhanced_topic # 处理风格ID if 'styleIds' in topic and topic['styleIds']: style_id = topic['styleIds'][0] if isinstance(topic['styleIds'], list) else topic['styleIds'] style_data = db_service.get_style_by_id(style_id) if style_data: enhanced_topic['style_object'] = style_data enhanced_topic['style'] = style_data.get('styleName') logger.info(f"从数据库加载风格数据: {style_data.get('styleName')} (ID: {style_id})") # 处理受众ID if 'audienceIds' in topic and topic['audienceIds']: audience_id = topic['audienceIds'][0] if isinstance(topic['audienceIds'], list) else topic['audienceIds'] audience_data = db_service.get_audience_by_id(audience_id) if audience_data: enhanced_topic['audience_object'] = audience_data enhanced_topic['targetAudience'] = audience_data.get('audienceName') logger.info(f"从数据库加载受众数据: {audience_data.get('audienceName')} (ID: {audience_id})") # 处理景区ID if 'scenicSpotIds' in topic and topic['scenicSpotIds']: spot_id = topic['scenicSpotIds'][0] if isinstance(topic['scenicSpotIds'], list) else topic['scenicSpotIds'] spot_data = db_service.get_scenic_spot_by_id(spot_id) if spot_data: enhanced_topic['scenic_spot_object'] = spot_data enhanced_topic['object'] = spot_data.get('name') logger.info(f"从数据库加载景区数据: {spot_data.get('name')} (ID: {spot_id})") # 处理产品ID if 'productIds' in topic and topic['productIds']: product_id = topic['productIds'][0] if isinstance(topic['productIds'], list) else topic['productIds'] product_data = db_service.get_product_by_id(product_id) if product_data: enhanced_topic['product_object'] = product_data enhanced_topic['product'] = product_data.get('productName') logger.info(f"从数据库加载产品数据: {product_data.get('productName')} (ID: {product_id})") except Exception as e: logger.error(f"增强选题数据时发生错误: {e}", exc_info=True) return enhanced_topic async def generate_content_with_prompt(self, topic: Dict[str, Any], system_prompt: str, user_prompt: str) -> Tuple[str, str, Dict[str, Any]]: """ 使用预构建的提示词为选题生成内容 Args: topic: 选题信息 system_prompt: 系统提示词 user_prompt: 用户提示词 Returns: 请求ID、选题索引和生成的内容 """ topicIndex = topic.get('index', 'unknown') logger.info(f"开始使用预构建提示词为选题 {topicIndex} 生成内容") # 直接使用预构建的提示词生成内容 content = await self.content_generator.generate_content_with_prompt(topic, system_prompt, user_prompt) # 生成请求ID requestId = f"content-{datetime.now().strftime('%Y%m%d-%H%M%S')}-{str(uuid.uuid4())[:8]}" logger.info(f"内容生成完成,请求ID: {requestId}, 选题索引: {topicIndex}") return requestId, topicIndex, content async def judge_content(self, topic: Optional[Dict[str, Any]] = None, content: Dict[str, Any] = {}, style_objects: Optional[List[Dict[str, Any]]] = None, audience_objects: Optional[List[Dict[str, Any]]] = None, scenic_spot_objects: Optional[List[Dict[str, Any]]] = None, product_objects: Optional[List[Dict[str, Any]]] = None) -> Tuple[str, str, Dict[str, Any], bool]: """ 审核内容 (已重构) """ if not topic: topic = {"index": "1", "date": "2024-07-01"} if not content: content = {"title": "未提供内容", "content": "未提供内容"} topicIndex = topic.get('index', 'unknown') logger.info(f"开始审核选题 {topicIndex} 的内容") # 构建包含所有预取信息的enhanced_topic enhanced_topic = topic.copy() if style_objects: enhanced_topic['style_object'] = style_objects[0] if audience_objects: enhanced_topic['audience_object'] = audience_objects[0] if scenic_spot_objects: enhanced_topic['scenic_spot_object'] = scenic_spot_objects[0] if product_objects: enhanced_topic['product_object'] = product_objects[0] system_prompt, user_prompt = self.prompt_builder.build_judge_prompt(enhanced_topic, content) judged_data = await self.content_judger.judge_content_with_prompt(content, enhanced_topic, system_prompt, user_prompt) judgeSuccess = judged_data.get('judge_success', False) if 'judge_success' in judged_data: judged_data = {k: v for k, v in judged_data.items() if k != 'judge_success'} judged_data['judgeSuccess'] = judgeSuccess requestId = f"judge-{datetime.now().strftime('%Y%m%d-%H%M%S')}-{str(uuid.uuid4())[:8]}" logger.info(f"内容审核完成,请求ID: {requestId}, 选题索引: {topicIndex}, 审核结果: {judgeSuccess}") return requestId, topicIndex, judged_data, judgeSuccess async def run_pipeline(self, dates: Optional[str] = None, numTopics: int = 5, styles: Optional[List[str]] = None, audiences: Optional[List[str]] = None, scenic_spots: Optional[List[str]] = None, products: Optional[List[str]] = None, skipJudge: bool = False, autoJudge: bool = False) -> Tuple[str, List[Dict[str, Any]], Dict[str, Dict[str, Any]], Dict[str, Dict[str, Any]]]: """ 运行完整的内容生成流水线:生成选题 → 生成内容 → 审核内容 Args: dates: 日期字符串,可能为单个日期、多个日期用逗号分隔或范围 numTopics: 要生成的选题数量 styles: 风格列表 audiences: 受众列表 scenic_spots: 景区列表 products: 产品列表 skipJudge: 是否跳过内容审核步骤(与autoJudge互斥) autoJudge: 是否在内容生成时进行内嵌审核 Returns: 请求ID、选题列表、内容字典和审核后内容字典 """ logger.info(f"开始运行完整流水线,日期: {dates}, 数量: {numTopics}, 内嵌审核: {autoJudge}") # 生成请求ID requestId = f"pipeline-{datetime.now().strftime('%Y%m%d-%H%M%S')}-{str(uuid.uuid4())[:8]}" # 1. 生成选题 _, topics = await self.generate_topics(dates, numTopics, styles, audiences, scenic_spots, products) if not topics: logger.error("未能生成任何选题") return requestId, [], {}, {} # 2. 为每个选题生成内容 contents = {} judgedContents = {} for topic in topics: topicIndex = topic.get('index', 'unknown') # 直接传递带有ID的选题数据,不再需要传递额外的对象参数 _, _, content = await self.generate_content(topic, autoJudge=autoJudge) if autoJudge: # 内嵌审核模式:content已包含审核结果和judgeSuccess状态 # 创建原始内容副本(移除judgeSuccess状态,但保留其他字段) original_content = {k: v for k, v in content.items() if k != 'judgeSuccess'} contents[topicIndex] = original_content judgedContents[topicIndex] = content # 包含审核结果和judgeSuccess状态 else: # 无审核模式:直接保存内容 contents[topicIndex] = content # 如果使用内嵌审核或跳过审核,直接返回结果 if autoJudge or skipJudge: logger.info(f"{'使用内嵌审核' if autoJudge else '跳过内容审核步骤'},流水线完成,请求ID: {requestId}") if autoJudge: return requestId, topics, contents, judgedContents else: return requestId, topics, contents, contents # 3. 对每个内容进行审核 judgedContents = {} for topicIndex, content in contents.items(): topic = next((t for t in topics if t.get('index') == topicIndex), None) if not topic: logger.warning(f"找不到选题 {topicIndex} 的原始数据,跳过审核") continue try: _, _, judged_data, _ = await self.judge_content(topic, content) judgedContents[topicIndex] = judged_data except Exception as e: logger.critical(f"为选题 {topicIndex} 处理内容审核时发生意外错误: {e}", exc_info=True) logger.info(f"流水线完成,请求ID: {requestId}") return requestId, topics, contents, judgedContents