#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 选题生成模块 """ import logging import json import re from typing import List, Dict, Any, Optional from json_repair import loads as json_repair_loads from core.ai import AIAgent from core.config import GenerateTopicConfig, ConfigManager from utils.prompts import TopicPromptBuilder from utils.file_io import OutputManager from .topic_parser import TopicParser logger = logging.getLogger(__name__) class TopicGenerator: """ 负责生成、解析和保存主题 """ def __init__(self, ai_agent: AIAgent, config_manager: ConfigManager, output_manager: OutputManager): """ 初始化主题生成器 Args: ai_agent: AI Agent config_manager: 配置管理器 output_manager: 输出管理器 """ self.ai_agent = ai_agent self.config: GenerateTopicConfig = config_manager.get_config('topic_gen', GenerateTopicConfig) self.output_manager = output_manager self.parser = TopicParser() self.prompt_builder = TopicPromptBuilder(config_manager) logger.info(f"选题生成配置: {self.config}") async def generate_topics(self) -> Optional[List[Dict[str, Any]]]: """ 执行完整的选题生成流程:构建提示 -> 调用AI -> 解析结果 -> 保存产物 """ logger.info("开始执行选题生成流程...") # 1. 构建提示 system_prompt = self.prompt_builder.get_system_prompt() user_prompt = self.prompt_builder.build_user_prompt( num_topics=self.config.topic.num, month=self.config.topic.date ) self.output_manager.save_text(system_prompt, "topic_system_prompt.txt") self.output_manager.save_text(user_prompt, "topic_user_prompt.txt") # 获取模型参数 model_params = {} if hasattr(self.config, 'model') and isinstance(self.config.model, dict): model_params = { 'temperature': self.config.model.get('temperature'), 'top_p': self.config.model.get('top_p'), 'presence_penalty': self.config.model.get('presence_penalty') } # 移除None值 model_params = {k: v for k, v in model_params.items() if v is not None} # 2. 调用AI生成 try: raw_result, _, _, _ = await self.ai_agent.generate_text( system_prompt=system_prompt, user_prompt=user_prompt, use_stream=False, # 选题生成通常不需要流式输出 stage="选题生成", **model_params ) self.output_manager.save_text(raw_result, "topics_raw_response.txt") except Exception as e: logger.critical(f"AI调用失败,无法生成选题: {e}", exc_info=True) return None # 3. 解析结果 topics = self.parser.parse(raw_result) if not topics: logger.error("未能从AI响应中解析出任何有效选题") return None # 4. 保存解析后的结果 self.output_manager.save_json(topics, "topics_generated.json") # 5. (可选)保存为易于阅读的 .txt 格式 topics_text = self._format_topics_to_text(topics) self.output_manager.save_text(topics_text, "topics_generated.txt") logger.info(f"选题生成流程成功完成,共生成 {len(topics)} 个选题。") return topics def _format_topics_to_text(self, topics: List[Dict[str, Any]]) -> str: """将选题列表格式化为人类可读的文本""" text_parts = [f"# 选题列表 (Run ID: {self.output_manager.run_id})\n"] for topic in topics: text_parts.append(f"## 选题 {topic.get('index', 'N/A')}") text_parts.append(f"- 日期: {topic.get('date', 'N/A')}") text_parts.append(f"- 对象: {topic.get('object', 'N/A')}") text_parts.append(f"- 产品: {topic.get('product', 'N/A')}") text_parts.append(f"- 风格: {topic.get('style', 'N/A')}") text_parts.append(f"- 目标受众: {topic.get('target_audience', 'N/A')}") text_parts.append(f"- 逻辑: {topic.get('logic', 'N/A')}") return "\n".join(text_parts)