311 lines
10 KiB
Python
311 lines
10 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
|
||
"""
|
||
选题生成引擎 V2
|
||
- 不访问数据库,接收完整数据
|
||
- 使用 PromptRegistry 管理 prompt
|
||
- 统一依赖注入
|
||
"""
|
||
|
||
import logging
|
||
from typing import Dict, Any, Optional, List
|
||
|
||
from .base import BaseAIGCEngine, EngineResult
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class TopicGenerateEngineV2(BaseAIGCEngine):
|
||
"""
|
||
选题生成引擎 V2
|
||
|
||
改进:
|
||
1. 不访问数据库,所有数据由调用方传入
|
||
2. 使用 PromptRegistry 管理 prompt
|
||
3. 接收完整对象而非 ID
|
||
"""
|
||
|
||
engine_id = "topic_generate"
|
||
engine_name = "选题生成"
|
||
version = "2.0.0"
|
||
description = "根据景区、产品、风格等信息生成营销选题"
|
||
|
||
def __init__(self):
|
||
super().__init__()
|
||
self._prompt_registry = None
|
||
|
||
def get_param_schema(self) -> Dict[str, Any]:
|
||
"""
|
||
定义参数结构
|
||
|
||
V2.2: 合并 scenic_spot 和 product 为 subject
|
||
"""
|
||
return {
|
||
# 基础参数
|
||
"num_topics": {
|
||
"type": "int",
|
||
"required": False,
|
||
"default": 5,
|
||
"desc": "生成选题数量",
|
||
},
|
||
"month": {
|
||
"type": "str",
|
||
"required": True,
|
||
"desc": "目标日期/月份 (如 '2024-12' 或 '12月5日')",
|
||
},
|
||
|
||
# 主体信息 (景区+产品合并)
|
||
"subject": {
|
||
"type": "object",
|
||
"required": False,
|
||
"desc": "主体信息 {id, name, type, description, location, products: [...]}",
|
||
},
|
||
# 兼容旧字段
|
||
"scenic_spot": {
|
||
"type": "object",
|
||
"required": False,
|
||
"desc": "[兼容] 景区信息,建议使用 subject",
|
||
},
|
||
"product": {
|
||
"type": "object",
|
||
"required": False,
|
||
"desc": "[兼容] 产品信息,建议使用 subject.products",
|
||
},
|
||
|
||
"style": {
|
||
"type": "object",
|
||
"required": False,
|
||
"desc": "风格信息对象 {id, name}",
|
||
},
|
||
"audience": {
|
||
"type": "object",
|
||
"required": False,
|
||
"desc": "受众信息对象 {id, name}",
|
||
},
|
||
|
||
# 热点信息
|
||
"hot_topics": {
|
||
"type": "object",
|
||
"required": False,
|
||
"desc": "热点信息 {events: [], festivals: [], trending: []}",
|
||
},
|
||
|
||
# 可选: 多选列表
|
||
"styles_list": {
|
||
"type": "list",
|
||
"required": False,
|
||
"desc": "可选风格列表 [{id, name}, ...]",
|
||
},
|
||
"audiences_list": {
|
||
"type": "list",
|
||
"required": False,
|
||
"desc": "可选受众列表 [{id, name}, ...]",
|
||
},
|
||
|
||
# Prompt 版本控制
|
||
"prompt_version": {
|
||
"type": "str",
|
||
"required": False,
|
||
"default": "latest",
|
||
"desc": "使用的 prompt 版本",
|
||
},
|
||
}
|
||
|
||
def estimate_duration(self, params: Dict[str, Any]) -> int:
|
||
"""预估执行时间"""
|
||
num_topics = params.get('num_topics', 5)
|
||
return 15 + num_topics * 2
|
||
|
||
async def execute(self, params: Dict[str, Any], task_id: str = None) -> EngineResult:
|
||
"""
|
||
执行选题生成
|
||
|
||
Args:
|
||
params: 包含完整对象的参数
|
||
task_id: 任务 ID
|
||
"""
|
||
try:
|
||
self.log(f"开始生成选题 (V2)")
|
||
self.set_progress(task_id, 10)
|
||
|
||
# 提取参数
|
||
num_topics = params.get('num_topics', 5)
|
||
month = params.get('month', '')
|
||
|
||
# 主体信息 (支持新旧两种格式)
|
||
subject = params.get('subject')
|
||
scenic_spot = params.get('scenic_spot')
|
||
product = params.get('product')
|
||
|
||
# 兼容处理: 如果没有 subject,从 scenic_spot + product 构建
|
||
if not subject and scenic_spot:
|
||
subject = {
|
||
**scenic_spot,
|
||
'type': scenic_spot.get('type', 'scenic_spot'),
|
||
'products': [product] if product else []
|
||
}
|
||
|
||
style = params.get('style')
|
||
audience = params.get('audience')
|
||
hot_topics = params.get('hot_topics')
|
||
styles_list = params.get('styles_list', [])
|
||
audiences_list = params.get('audiences_list', [])
|
||
prompt_version = params.get('prompt_version', 'latest')
|
||
|
||
self.set_progress(task_id, 20)
|
||
|
||
# 获取 PromptRegistry
|
||
prompt_registry = self._get_prompt_registry()
|
||
|
||
# 构建 prompt 上下文
|
||
context = {
|
||
'num_topics': num_topics,
|
||
'month': month,
|
||
'subject': subject,
|
||
# 兼容旧 prompt 模板
|
||
'scenic_spot': subject,
|
||
'product': subject.get('products', [{}])[0] if subject and subject.get('products') else product,
|
||
'style': style,
|
||
'audience': audience,
|
||
'hot_topics': hot_topics,
|
||
'styles_list': self._format_list(styles_list),
|
||
'audiences_list': self._format_list(audiences_list),
|
||
}
|
||
|
||
# 渲染 prompt
|
||
system_prompt, user_prompt = prompt_registry.render(
|
||
'topic_generate',
|
||
context=context,
|
||
version=prompt_version
|
||
)
|
||
|
||
self.set_progress(task_id, 30)
|
||
|
||
# 获取模型参数
|
||
prompt_config = prompt_registry.get('topic_generate', prompt_version)
|
||
model_params = prompt_config.get_model_params()
|
||
|
||
# 调用 LLM
|
||
self.log("调用 LLM 生成选题...")
|
||
raw_result, input_tokens, output_tokens, time_cost = await self.llm.generate(
|
||
system_prompt=system_prompt,
|
||
user_prompt=user_prompt,
|
||
**model_params
|
||
)
|
||
|
||
self.set_progress(task_id, 70)
|
||
|
||
# 解析结果
|
||
topics = self._parse_topics(raw_result)
|
||
|
||
if not topics:
|
||
return EngineResult(
|
||
success=False,
|
||
error="选题生成失败,无法解析结果",
|
||
error_code="PARSE_ERROR"
|
||
)
|
||
|
||
self.set_progress(task_id, 90)
|
||
|
||
# 增强选题信息 (添加原始对象引用)
|
||
enhanced_topics = self._enhance_topics(
|
||
topics, subject, style, audience
|
||
)
|
||
|
||
self.set_progress(task_id, 100)
|
||
|
||
return EngineResult(
|
||
success=True,
|
||
data={
|
||
"topics": enhanced_topics,
|
||
"count": len(enhanced_topics),
|
||
},
|
||
metadata={
|
||
"input_tokens": input_tokens,
|
||
"output_tokens": output_tokens,
|
||
"time_cost": time_cost,
|
||
"prompt_version": prompt_version,
|
||
}
|
||
)
|
||
|
||
except Exception as e:
|
||
self.log(f"选题生成异常: {e}", level='error')
|
||
return EngineResult(
|
||
success=False,
|
||
error=str(e),
|
||
error_code="EXECUTION_ERROR"
|
||
)
|
||
|
||
def _get_prompt_registry(self):
|
||
"""获取 PromptRegistry"""
|
||
if self._prompt_registry:
|
||
return self._prompt_registry
|
||
|
||
from domain.prompt import PromptRegistry
|
||
self._prompt_registry = PromptRegistry('prompts')
|
||
return self._prompt_registry
|
||
|
||
def _format_list(self, items: List[Dict]) -> str:
|
||
"""格式化列表为字符串"""
|
||
if not items:
|
||
return ""
|
||
|
||
lines = []
|
||
for item in items:
|
||
name = item.get('name', '')
|
||
desc = item.get('description', '')
|
||
if name:
|
||
lines.append(f"- {name}: {desc}" if desc else f"- {name}")
|
||
|
||
return "\n".join(lines)
|
||
|
||
def _parse_topics(self, raw_result: str) -> List[Dict[str, Any]]:
|
||
"""解析 LLM 返回的选题"""
|
||
import json
|
||
import re
|
||
|
||
# 尝试提取 JSON
|
||
json_match = re.search(r'\[[\s\S]*\]', raw_result)
|
||
if json_match:
|
||
try:
|
||
return json.loads(json_match.group())
|
||
except json.JSONDecodeError:
|
||
pass
|
||
|
||
# 尝试 json_repair
|
||
try:
|
||
import json_repair
|
||
return json_repair.loads(raw_result)
|
||
except:
|
||
pass
|
||
|
||
self.log("无法解析选题结果", level='error')
|
||
return []
|
||
|
||
def _enhance_topics(self, topics: List[Dict],
|
||
subject: Optional[Dict],
|
||
style: Optional[Dict],
|
||
audience: Optional[Dict]) -> List[Dict]:
|
||
"""增强选题信息"""
|
||
enhanced = []
|
||
|
||
for topic in topics:
|
||
enhanced_topic = dict(topic)
|
||
|
||
# 添加原始对象 ID 引用
|
||
if subject:
|
||
enhanced_topic['subject_id'] = subject.get('id')
|
||
# 从 products 中提取第一个产品的 ID (如果有)
|
||
products = subject.get('products', [])
|
||
if products and len(products) > 0:
|
||
enhanced_topic['product_id'] = products[0].get('id')
|
||
if style:
|
||
enhanced_topic['style_id'] = style.get('id')
|
||
if audience:
|
||
enhanced_topic['audience_id'] = audience.get('id')
|
||
|
||
enhanced.append(enhanced_topic)
|
||
|
||
return enhanced
|