200 lines
9.5 KiB
Python

import os
import time
from datetime import datetime
import argparse
import sys
import traceback
from core.ai_agent import AI_Agent
from core.topic_parser import TopicParser
import core.contentGen as contentGen
import core.posterGen as posterGen
import core.simple_collage as simple_collage
from utils.resource_loader import ResourceLoader
from utils.tweet_generator import prepare_topic_generation, generate_topics, generate_single_content
import random
TEXT_POSBILITY = 0.3
def main():
config_file = {
"date": "4月24日",
"num": 10,
"model": "qwenQWQ",
"api_url": "vllm",
"api_key": "EMPTY",
"topic_system_prompt": "/root/autodl-tmp/TravelContentCreator/SelectPrompt/systemPrompt.txt",
"topic_user_prompt": "/root/autodl-tmp/TravelContentCreator/SelectPrompt/userPrompt.txt",
"content_system_prompt": "/root/autodl-tmp/TravelContentCreator/genPrompts/systemPrompt.txt",
"resource_dir": [{
"type": "Object",
"num": 4,
"file_path": ["/root/autodl-tmp/TravelContentCreator/resource/Object/景点信息-尚书第.txt",
"/root/autodl-tmp/TravelContentCreator/resource/Object/景点信息-明清园.txt",
"/root/autodl-tmp/TravelContentCreator/resource/Object/景点信息-泰宁古城.txt",
"/root/autodl-tmp/TravelContentCreator/resource/Object/景点信息-甘露寺.txt"
]},
{
"type": "Product",
"num": 0,
"file_path": []
}
],
"prompts_dir": "/root/autodl-tmp/TravelContentCreator/genPrompts",
"output_dir": "/root/autodl-tmp/TravelContentCreator/result",
"variants": 10,
"topic_temperature": 0.2,
"content_temperature": 0.3
}
if True:
# 1. 首先生成选题
ai_agent, system_prompt, user_prompt, output_dir = prepare_topic_generation(
config_file["date"], config_file["num"], config_file["topic_system_prompt"], config_file["topic_user_prompt"],
config_file["api_url"], config_file["model"], config_file["api_key"], config_file["prompts_dir"], config_file["resource_dir"], config_file["output_dir"]
)
run_id, tweet_topic_record = generate_topics(
ai_agent, system_prompt, user_prompt, config_file["output_dir"],
config_file["topic_temperature"], 0.5, 1.5
)
output_dir = os.path.join(config_file["output_dir"], run_id)
os.makedirs(output_dir, exist_ok=True)
tweet_topic_record.save_topics(os.path.join(output_dir, "tweet_topic.json"))
tweet_topic_record.save_prompt(os.path.join(output_dir, "tweet_prompt.txt"))
ai_agent.close()
# raise Exception("选题生成失败,退出程序")
if not run_id or not tweet_topic_record:
print("选题生成失败,退出程序")
return
# 2. 然后生成内容
print("\n开始根据选题生成内容...")
# 加载内容生成的系统提示词
content_system_prompt = ResourceLoader.load_system_prompt(config_file["content_system_prompt"])
if not content_system_prompt:
print("内容生成系统提示词为空,使用选题生成的系统提示词")
content_system_prompt = system_prompt
# 直接使用同一个AI Agent实例
for i in range(len(tweet_topic_record.topics_list)):
tweet_content_list = []
for j in range(config_file["variants"]):
time.sleep(random.random())
ai_agent = AI_Agent(config_file["api_url"], config_file["model"], config_file["api_key"])
tweet_content, gen_result = generate_single_content(
ai_agent, content_system_prompt, tweet_topic_record.topics_list[i],
config_file["prompts_dir"], config_file["resource_dir"],
output_dir, run_id, i+1, j+1, config_file["content_temperature"]
)
tweet_content_list.append(tweet_content.get_json_file())
ai_agent.close()
if not tweet_content:
print(f"生成第{i+1}篇文章的第{j+1}个变体失败,跳过")
continue
object_name = tweet_topic_record.topics_list[i]["object"]
try:
object_name = object_name.split(".")[0]
except:
pass
try:
object_name = object_name.split("景点信息-")[1]
except:
pass
# 处理对象名称中可能包含的"+"等特殊字符
# if "+" in object_name:
# # 取第一个景点名称作为主要对象
# object_name = object_name.split("+")[0].strip()
# print(f"对象名称包含多个景点,使用第一个景点:{object_name}")
# 检查图片路径是否存在
img_dir_path = f"/root/autodl-tmp/sanming_img/modify/{object_name}"
if not os.path.exists(img_dir_path):
print(f"图片目录不存在:{img_dir_path},跳过该对象")
continue
info_directory = [
f"/root/autodl-tmp/sanming_img/相机/{object_name}/description.txt"
]
# 检查描述文件是否存在
if not os.path.exists(info_directory[0]):
print(f"描述文件不存在:{info_directory[0]},使用生成的内容替代")
info_directory = []
poster_num = config_file["variants"]
input_dir = img_dir_path # 使用前面检查过的目录路径
target_size = (900, 1200)
result_path = []
content_gen = contentGen.ContentGenerator()
response = content_gen.run(info_directory, poster_num, tweet_content_list)
print(response)
try:
poster_config_summary = posterGen.PosterConfig(response)
for j_index in range(config_file["variants"]):
poster_config = poster_config_summary.get_config_by_index(j_index)
img_dir = os.path.join(output_dir, f"{i+1}_{j_index+1}")
try:
# 创建输出目录
collage_output_dir = os.path.join(img_dir, "collage_img")
os.makedirs(collage_output_dir, exist_ok=True)
poster_output_dir = os.path.join(img_dir, "poster")
os.makedirs(poster_output_dir, exist_ok=True)
# 处理图片目录
img_list = simple_collage.process_directory(
input_dir,
target_size=target_size,
output_count=1,
output_dir=collage_output_dir
)
print(img_list)
if not img_list or len(img_list) == 0:
print(f"未能生成拼贴图片,跳过海报生成")
continue
# 生成海报
poster_gen = posterGen.PosterGenerator()
if random.random() < TEXT_POSBILITY:
text_data = {
"title": f"{poster_config['main_title']}",
"subtitle": "",
"additional_texts": [
{"text": f"{poster_config['texts'][0]}", "position": "bottom", "size_factor": 0.5},
{"text": f"{poster_config['texts'][1]}", "position": "bottom", "size_factor": 0.5}
]
}
else:
text_data = {
"title": f"{poster_config['main_title']}",
"subtitle": "",
"additional_texts": [
{"text": f"{poster_config['texts'][0]}", "position": "bottom", "size_factor": 0.5},
# {"text": f"{poster_config['texts'][1]}", "position": "bottom", "size_factor": 0.5}
]
}
print(text_data)
img_path = img_list[0]['path']
print(f"使用图片路径: {img_path}")
output_path = os.path.join(poster_output_dir, f"poster.jpg")
result_path.append(poster_gen.create_poster(img_path, text_data, output_path))
except Exception as e:
print(f"海报生成过程中出错: {e}")
traceback.print_exc() # 打印完整的堆栈跟踪信息
continue
except Exception as e:
print(f"配置解析失败,跳过当前项目: {e}")
traceback.print_exc() # 打印完整的堆栈跟踪信息
continue
if __name__ == "__main__":
main()