59 lines
1.8 KiB
Python
Raw Permalink Normal View History

2025-07-31 15:35:23 +08:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
AI响应解析器模块
"""
import logging
import json
from typing import List, Dict, Any
from utils.file_io import process_llm_json_text
logger = logging.getLogger(__name__)
class TopicParser:
"""
解析和验证由AI模型生成的选题列表
"""
@staticmethod
def parse(raw_text: str) -> List[Dict[str, Any]]:
"""
从原始文本解析修复和验证JSON
Args:
raw_text: AI模型返回的原始字符串
Returns:
一个字典列表每个字典代表一个有效的选题
"""
logger.info("开始解析AI生成的选题...")
# 使用通用JSON解析函数解析原始文本
parsed_json = process_llm_json_text(raw_text)
if not parsed_json:
logger.error("解析AI响应失败无法获取JSON数据")
return []
if not isinstance(parsed_json, list):
logger.error(f"解析结果不是列表,而是 {type(parsed_json)}")
return []
logger.info(f"成功解析 {len(parsed_json)} 个选题对象。开始验证...")
# 验证每个选题是否包含所有必需的键
valid_topics = []
required_keys = {"index", "date", "logic", "object", "product", "style", "targetAudience"}
optional_keys = {"productLogic", "styleLogic", "targetAudienceLogic"}
for i, item in enumerate(parsed_json):
if isinstance(item, dict) and required_keys.issubset(item.keys()):
valid_topics.append(item)
else:
logger.warning(f"{i+1} 个选题缺少必需键或格式不正确: {item}")
logger.info(f"验证完成,获得 {len(valid_topics)} 个有效选题。")
return valid_topics